首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
中国机动车污染物排放系数研究   总被引:4,自引:1,他引:3  
中国机动车污染物排放已成为影响空气质量的重要来源。基于控制技术的机动车污染排放系数研究有助于排放控制。根据机动车使用状况,车用燃料硫含量,行驶状况和活动水平,运用MOBILE6.2的方法和原理确定了中国各类型机动车HC、CO、NOx的排放系数。小型汽油客车国0阶段CO、HC、NOx分别为78.18t/v、7.89t/v和1.95t/v;国Ⅰ阶段CO、HC、Nox分则为7.16t/v、0.64t/v和1.02t/v;国Ⅱ阶段CO、HC、NOx分则为0.64t/v、0.45t/v和0.25t/v。  相似文献   

2.
广州市机动车排放因子隧道测试研究   总被引:13,自引:2,他引:11  
选取广州城市隧道进行连续48h的监测,获得了隧道内NOx,CO,SO2,PM10和HC等污染物的浓度、交通和气象等实测数据,计算出隧道内机动车NOx,CO,SO2,PM-10和HC的单车平均排放因子分别为1.38,15.40,0.14,0.64和1.86g/(km*辆),并得到了8类机动车各种排放污染物的综合排放因子.   相似文献   

3.
运用CMEM模型计算北京市机动车排放因子   总被引:16,自引:4,他引:12  
采用由美国加州大学Riverside分校开发的综合模式排放模型(CMEM)分析和研究北京市机动车污染物的排放特征,以9辆代表北京市典型技术类型的轻型机动车为实验车辆,收集了运行CMEM模型所需要的数据和参数.通过CMEM模型Access 2.02版本计算,得到了在不同交通行驶状况下北京市4类典型轻型机动车的CO2,CO,HC,NOx单车排放因子及各车型综合排放因子.通过与同一车辆的在路实测排放因子比较发现,用CMEM模型计算的CO,HC和NOx与实测排放因子及排放特征有较好的一致性,因此适用于计算北京市机动车CO,HC和NOx排放因子.   相似文献   

4.
杭州市区机动车污染物排放特征及分担率   总被引:1,自引:0,他引:1       下载免费PDF全文
选取杭州市区绕城高速、快速路、主干道和民用支路4种典型道路进行工况测试,建立了2010年机动车CO、HC、NOx和PM10排放清单,获得了分车型、燃料类型、排放标准以及道路类型的机动车污染物排放分担率.结果表明,杭州市机动车的污染物排放分担率差别显著,乘用车、出租车和公交车是CO和HC排放的主要来源,重型货车和公交车是NOx和PM10排放的主要来源,且乘用车的NOx排放分担率也较大;柴油车的NOx和PM10的排放分担率远大于其保有量的贡献率,是其排放的主要来源,汽油车是CO和HC排放的主要来源;占保有量30%的国0和国I车辆,对CO、HC、NOx和PM10排放分担率分别为67%、69%、58%和82%;主干道是机动车CO、HC和NOx排放的主要来源,其排放分担率分别为66%、65%和64%,民用支路是PM10排放的主要来源,分担率为55%.  相似文献   

5.
环境保护部日前发布((2013年中国机动车污染防治年报》,公布了2012年全国机动车污染排放状况。本期“研究成果展示”专栏以六篇形式连载。本文刊载2012年全国机动车污染物排放量现状及其变化趋势的内容,以飨读者。该年报指出,2012年,全国机动车排放污染物4612.1万吨,比2011年增加0.1%,其中氮氧化物(NOx)640.0万吨,碳氢化合物(HC)438.2万吨,一氧化碳(CO)3471.7万吨,颗粒物(PM)62.2万吨。汽车是污染物总量的主要贡献者,其排放的NOx和PM超过90%,HC和CO超过70%。按车型分类,全国货车排放的NOx和PM明显高于客车,其中重型货车是主要贡献者;而客车CO和HC排放量则明显高于货车。按燃料分类,全国柴油车排放的NOx接近汽车排放总量的70%,PM超过90%;而汽油车CO和HC排放量则较高,超过排放总量的70%。按排放标准分类,占汽车保有量7.8%的国I前标准汽车,其排放的四种主要污染物占排放总量的35.0%以上:而占保有量61.6%的国Ⅲ及以上标准汽车,其排放量还不到排放总量的30.0%。按环保标志分类,仅占汽车保有量13.4%的“黄标车”却排放了58.2%的NOx、56.8%的Hc、52.5%的CO和81.9%的PM。2012年,全国机动车保有量比2011年增长了7.8%,但四项污染物排放总量与2011年基本持平,这与实施更严格的机动车排放标准、加快淘汰高排放的“黄标车”、提升车用燃料品质等措施有关。  相似文献   

6.
以佛山市3辆汽油车(国0小汽车、国0面包车与国Ⅳ小汽车)为研究对象,利用PEMS测试技术,研究了机动车在实际道路行驶过程中的尾气排放特征,重点分析了不同车辆类型、排放标准与行驶速度下的机动车油耗与CO、CO2、NOx排放因子,并结合COPERT模型模拟结果进行了对比分析。结果表明:(1)3辆测试车辆CO2、NOx排放与油耗曲线的走势趋于一致;2辆小汽车CO与油耗的曲线均随速度的提升而升高,而面包车CO的排放与油耗则呈现相反的现象。(2)实际测试数据中国0与国Ⅳ小汽车的CO排放因子差异较大,以国0/国Ⅳ小汽车气态物排放因子的比值为指标,实际测试数据中CO的该比值变化范围在272~600之间,而CO2与NOx分别仅为0.66~0.84与0.58~4.05。(3)对比CO与NOx,各车型COPERT模拟与PEMS实测所获的CO2排放因子结果最为接近,其模拟值/测试值之比间于0.645~1.497,故COPERT模型对于中国机动车尾气CO2排放的模拟相对较为准确。  相似文献   

7.
宁波市区道路机动车综合排放因子   总被引:1,自引:1,他引:0  
机动车综合排放因子是计算城市机动车污染物排放总量和排放分担率的基础,是降低城市机动车排放的重要依据,是控制城市道路交通污染的源头.根据宁波市区道路机动车运行工况的研究成果,利用加速模拟工况(ASM)排放测试系统,检测主要污染物HC,CO和NOx的排放浓度;依据试验车变速器和主减速器的结构参数,以及试验车在宁波市区道路运行时的档位分布计算排污值,并依据机动车的年代和车型分布对该值进行修正,计算宁波市区道路机动车综合排放因子.结果表明,宁波市区道路机动车主要污染物HC,CO和NOx的综合排放因子分别为5.89,21.22和18.91 g/(km·辆).   相似文献   

8.
基于COPERT模型的江苏省机动车时空排放特征与分担率   总被引:4,自引:3,他引:1  
李荔  张洁  赵秋月  李慧鹏  韩军赞 《环境科学》2018,39(9):3976-3986
利用COPERT模型和Arc GIS技术建立了江苏省2015年1 km×1 km、小时分辨率的机动车网格化排放清单.采用改进的"标准道路长度"方法,利用路网信息以及拥堵延时指数的月变化、周变化和日变化数据提高清单的时空分辨率.基于COPERT模拟结果分析了分车型、排放标准以及道路类型的机动车污染物排放分担率.结果表明,江苏省2015年NOx、HC、CO、PM_(2.5)、SO_2、OM和BC的排放量分别为49.09、16.63、161.48、1.69、0.19、0.36和0.67万t,其中苏州和徐州排放量占比之和达34%~45%;HC蒸发排放量为2.02万t,占HC排放总量的12%;小型客车和摩托车对于HC和CO排放量的分担率最大,均超过30%;重型柴油货车对NOx、PM_(2.5)、SO_2、OM、BC的分担率在36%~54%之间,远高于其他车型;苏州和徐州的重型和中型柴油货车是NOx、PM_(2.5)的最主要排放源;国Ⅲ标准柴油车对NOx、PM_(2.5)、SO_2和BC的分担率均最大,在42%~55%之间;国Ⅲ标准重型柴油货车和国0标准中型柴油货车是全省NOx、PM_(2.5)、OM和BC的首要和次要贡献车型,两者分担率之和在40%~56%之间.国0标准摩托车对全省HC和CO排放的分担率较高,约为16%.  相似文献   

9.
根据车辆类型及排放因子计算西安市机动车尾气污染物排放CO、碳氢化合物(HC)、氮氧化物(NOx)及颗粒物(PM)的特征。结果显示,机动车排放污染物中一氧化碳含量远大于其他三者。CO和HC主要来自客车,尤其是小型客车,而颗粒物主要由重型货车排放;超过80%的CO和HC来自汽油车,而超过90%的PM排放来自柴油车;国Ⅰ前汽车在西安市汽车保有量中仅占3.48%,而四种污染物排放量在的比例分别为33.55%、29.68%、11.92%和21.43%。为减少机动车尾气污染物的排放,建议淘汰国Ⅰ前车辆,对柴油车尾气加强处理。  相似文献   

10.
乌鲁木齐市区机动车污染物排放特征研究   总被引:1,自引:0,他引:1  
何丽  朱建雯  钱翌 《环境工程》2015,33(5):90-94
选择乌鲁木齐市125条道路调研测试得来的数据分析了乌鲁木齐市在用机动车的行驶分布的规律、污染物的排放特点和机动车道路的行驶特点。然后使用COPERT本地化模型计算CO、NMVOC、NOx和PM的排放因子,并计算了2012年CO、NMVOC、NOx和PM的排放量。通过估算得到2012年乌鲁木齐市机动车CO、NMVOC、NOx和PM的排放量分别为94 087,17 886,25 079,1 489 t。柴油机动车对NOx、PM的排放分担比率较大,而柴油机动车的保有量的贡献比率偏低;柴油汽车的CO、NMVOC的保有量的贡献比率跟它的排放分担率相比,贡献率要大;占保有量22.3%的国Ⅰ、国Ⅰ前标准的机动车辆对机动车CO、NMVOC、NOx、PM的排放分担比率分别为50.5%、41.0%、51.5%和55.0%;占保有量64.3%的国Ⅲ、和国Ⅳ车辆对CO、NMVOC、NOx和PM的贡献率分别为35.2%、42.7%、35.6%和33.9%。  相似文献   

11.
利用OBS-2200车载测试系统,分别在高峰期、平峰期和低峰期的天津市典型路段进行了车载测试,并获得了碳氢化合物(HC)、一氧化碳(CO)和氮氧化物(NOx)等车辆排放的污染物的逐秒数据.结果显示在这3个时段内,车辆的加速度大都集中在-1.5~1.5m/s2,速度大都集中在0~70km/h,并且HC、CO和NOx的最高排放率为0.0673、0.706和0.0178g/s,都集中在高速(速度(v)>30km/h, 加速度(a)>0.5m/s2)工况范围内.通过拟合发现,HC、CO和NOx的排放率与比功率(Vehicle Specific Power,简称VSP)之间的拟合决定系数分别为0.71、0.86和0.85,相关性较高,说明VSP可以作为评价车辆排放率的一个重要参考性指标.  相似文献   

12.
我国轻型汽车污染物排放因子的测试研究   总被引:18,自引:0,他引:18  
采用底盘测功机按ECE-15规程测试了我国13辆(12种)正在使用的轻型汽车的CO、HC和NOx的排放量分别为87.25±56.31、11.36±5.13和8.20±6.68g/test;在相同测试条件下,测试了其中11种轻型车在不同车速匀速行驶时的CO、HC和NOx排放因子.测试结果表明、轻型汽车污染物排放因子随车速的变化有良好的规律性.用统计方法拟合了轻型汽车污染物排放因子的车速变化系数的计算公式。当车速<90km/h时,轻型车CO、HC排放因子随车速的增加而减小,当车速>90km/h时,又略有增加,而NOx排放因子随车速的增加而增大。  相似文献   

13.
Roadside remote sensing measurement was used to explore the real-world emission status of light duty gasoline vehicles (LDGVs) and motorcycles in Macao. Both fuel-based and distance-based emission factors were derived using the mass balance method. The emission concentration profile of LDGVs illustrated the benefits of tightening emission standards at the source country or region of import. The distance-based emission factors for CO, HC and NOx of LDGVs registered before 2000 were 8.00, 1.04 and 1.36 g/km, respectively. The distance-based emission factors for CO, HC and NOx of LDGVs registered in or after 2000 were 1.16, 0.15 and 0.18 g/km, respectively. The fuel-based CO emission factors of light duty motorcycles (LDMCs) and heavy duty motorcycles (HDMCs) registered before 2000 were about 10 times higher than those of LDGVs of the same age group. As the emissions of LDGVs decreased more quickly after 2000, the gap widens for newer vehicles. The distance-based HC emission factors of LDMCs and HDMCs registered before 2000 were 4.81 and 2.91 g/km, respectively. The distance-based HC emission factors of LDMCs and HDMCs registered in or after 2000 were 3.52 and 0.93 g/km, respectively. The poor emission performance of motorcycles and their larger share in the traffic flow will cause them to be the major contributor to traffic CO and HC emissions. LDMCs, especially two-stroke models, should be the priority for vehicle emission control efforts in Macao.  相似文献   

14.
杭州市机动车污染物排放清单的建立   总被引:8,自引:0,他引:8       下载免费PDF全文
基于调研的基础数据,运用修正后的IVE排放模型及GIS系统建立了杭州市2010年1km×1km的高时空分辨率的机动车排放清单.结果表明,2010年杭州市机动车污染物CO、HC、NOx、PM的年排放量分别为44.06,2.31,4.43,0.65万t,主要来自线源道路的排放.各车型污染物分担率各不相同,汽油乘用车和公交车排放CO和HC最大,柴油重型货车和公交车是NOx和PM排放的主要来源,两种燃油下的机动车排放差异十分明显.机动车污染排放与路网密集程度及道路长度密切相关,因此西湖区和江干区排放总量远远高出其他区域.机动车各污染物排放强度空间分布均呈现由城市中心向城市边缘的递减趋势,各污染物中心城区排放量占总排量的70%以上.机动车污染物排放日变化十分明显,与人群出行规律有极大的相关性.  相似文献   

15.
Real-world vehicle emission factors in Chinese metropolis city--Beijing   总被引:4,自引:0,他引:4  
The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15 EUDC driving cycle usually take the lowest value and with real wodd driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15 EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are - 0.42--2.99, - 0.32--0.81 and - 0.11--11 with FTP75 testing, 0.11--1.29, - 0.77--0.64 and 0.47--10.50 with Beijing 1997 testing and 0.25--1.83, 0.09--0.75 and - 0.58--1.50 with real wodd testing. Compared to the carburetor vehicles, the retrofit and MPI TWC vehicles‘ pollution emission factors decrease with different degree. The retrofit vehicle (Santana) will reduce 4.44%--58.44% CO, - 4.95%--36.79% NOx, -32.32%--33.89% HC, and -9.39%--14.29% fuel consumption, and especially that the MPI TWC vehicle will decrease CO by 82.48%--91.76%, NOx by 44.87%--92.79%, HC by 90.00%--93.89% and fuel consumption by 5.44%--10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.  相似文献   

16.
上海市机动车排气污染负荷的估算   总被引:14,自引:3,他引:14  
根据机动车行驶工况和污染物排放系数测定,定量计算了近年来上海市机动车在实际行驶工况下的污染物排放量,匀速行驶时间仅占13.8%,1995年机动车排放的CO、NMHC和NOx负荷已占中心城区大气污染物排放总量的76%,93%和44%,机动车已成为造成上海市区大气污染的主要排放源。  相似文献   

17.
The real-world fuel efficiency and exhaust emission profiles of CO, HC and NOx for light-duty diesel vehicles were investigated. Using a portable emissions measurement system, 16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method. The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 ± 0.6) L/100 km, while other five diesel taxies showed relatively high values at (8.5 ± 1.7) L/100 km due to the variation in transmission systems and emission control strategies. Compared to similar Corolla gasoline models, the diesel cars confirmed an advantage of ca. 20% higher fuel efficiency. HC and CO emissions of all the 16 taxies are quite low, with the average at (0.05 ± 0.02) g/km and (0.38 ± 0.15) g/km, respectively. The average NOx emission factor of the 11 Corolla taxies is (0.56 ± 0.17) g/km, about three times higher than their gasoline counterparts. Two of the three Hyundai Sonata taxies, configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies, indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination. A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified. To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area, traffic planning also needs improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号