首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Organic pesticides have been used for more than 50 years, and have made a major contribution to the profound alteration of agricultural practice which has occurred during this period. Among the many effects arising from these developments in agriculture, various environmental changes have been identified, which have been the subject of considerable public debate and disagreement. Attention has focussed particularly on the popularly assumed adverse influence of pesticides on the natural flora and fauna. This review examines the position in the United Kingdom where interest in wildlife has always been extensive and where many amateur observations and professional scientific studies have been brought to bear on the problem. It differentiates between ‘direct’ effects which may be attributed to particular uses of certain compounds and ‘indirect’ effects normally arising from changes in habitat or food supply brought about by pesticides. The approach adopted has been to assess the effects of pesticide use on populations rather than attempting to place a financial estimate on any adverse environmental effect attributed to pesticides. Systems of surveillance are described and their ability to detect adverse effects is assessed. The difficulty of correlating such effects with pesticide use is examined. In general, it is concluded that other than for insects the levels of surveillance have been adequate to detect adverse effects on fauna and flora arising from pesticide use. Where direct effects have been discerned in the past, action has, where possible, been taken to rectify the position and it is suggested that this will continue. Overall there is little evidence that the survival of individual species is threatened by the direct effects of pesticides. Indirect effects are neither simple to delineate nor readily corrected and it is recommended that more research be carried out to develop the ability to assess their influence.  相似文献   

2.
The impact of effluent irrigation on the transformation and mobility of organic contaminants is poorly understood. The objectives of this review paper are: (i) to discuss the fundamental processes influencing the transformation and transport of pesticides in soil; (ii) to present a critical analysis of the impact of effluent irrigation on the transformation and transport of pesticides in soils; (iii) to suggest research areas that need attention. Effluent irrigation affects the fate of pesticides through its direct effect on the transformation and transport of pesticides that are already present at the irrigation sites, and its indirect effect on soil properties that are important in controlling the transformation and transport of organic contaminants. It has often been noticed that the effluent-derived dissolved organic matter (DOM) facilitates the movement of soil-borne pesticides by forming soluble pesticide complexes, and enhances their biodegradation by providing energy sources for the microorganisms that are involved in pesticide degradation. However, the results of field and laboratory experiments that examined the effect of effluent irrigation on the fate of pesticides are inconsistent; in some cases reduced mobility resulting from enhanced pesticide sorption has been observed, but enhanced pesticide mobility has also been reported. The inconsistency may be related to the inherent spatial variability of soil properties and/or the heterogeneity of effluent quality. For example, effluents vary in the nature and concentration of DOM that play a vital role in the degradation, sorption and transport behaviour of pesticides. Similarly, they vary in the concentrations of solvents and surfactants that have been shown to impact sorption and transport of organic contaminants. Field-based investigations on the impact of effluent irrigation on pesticide fate coupled with an accurate characterisation of the effluent are urgently required to assess the long-term risk associated with effluent irrigation in relation to pesticide transformation and transport.  相似文献   

3.
阿特拉津和溴氰菊酯降解规律及其分析方法   总被引:1,自引:0,他引:1  
陈玲  汤杰 《上海环境科学》1999,18(8):376-378
研究了阿特拉津(atrazine)和溴氰菊酯(deltamethrin0两类农药在环境介质中的降解行为,详细比较了两者降解性能之间存在的差异,并明确指出它们的降解产物都具有一定的毒性和更强的极性,通过对阿特拉津及其降解产物的研究实例,说明了在研究环境介质中残余微量农药的检测方法时,建立以农药家族及其降解产物为整体的系统分析方法是必要的。  相似文献   

4.
Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.  相似文献   

5.
Human exposures to pesticides can occur in the workplace, in the household and through the ambient environment. While several articles have reviewed the impact of pesticide exposures on human respiratory health in occupational settings, to the best of our knowledge, this article is the first one to review published studies on the association between pesticide exposures and human respiratory health in the general populations. In this article, we critically reviewed evidences up to date studying the associations between non-occupational pesticide exposures and respiratory health in general populations. This article also highlighted questions arising from these studies, including our recent analyses using the data from the Canadian Health Measures Survey (CHMS), for future research. We found few studies have addressed the impact of environmental pesticide exposures on respiratory health, especially on lung function, in general populations. In the studies using the data from CHMS Cycle 1, exposures to OP insecticides, pyrethroid insecticides, and the organochlorine pesticide DDT were associated with impaired lung function in the Canadian general population, but no significant associations were observed for the herbicide 2,4-D. Future research should focus on the potential age-specific and pesticide-specific effect on respiratory health in the general population, and repeated longitudinal study design is critical for assessing the temporal variations in pesticide exposures. Research findings from current studies of non-occupational pesticide exposures and their health impact in general population will help to improve the role of regulatory policies in mitigating pesticide-related public health problems, and thereafter providing greater benefit to the general population.  相似文献   

6.
光诱导下农药的化学转化及其环境意义   总被引:6,自引:0,他引:6  
农药在光诱导下进行的化学转化是重要的非生物转化途径,其过程和产物对农药药效、代谢、毒性及环境影响重大.近年来,在国外已成为十分活跃的研究领域.本文着重论述农药环境光化学基本概念,主要光化学反应类型及光诱导下农药化学转化的环境意义。  相似文献   

7.
农药在包气带中迁移过程的数值模拟   总被引:1,自引:0,他引:1  
根据水动力学弥散理论建立农药在包气带中运移与转化过程的数学模型,评价农药使用对地下水环境的影响。选择应用范围广、用量大、毒性高的7种农药为目标污染物,以汉江流域的中下游地区的气象与土壤特征为条件进行模拟,结果表明,甲胺磷、乐果、甲草胺容易在土壤中淋溶,对地下水造成很大威胁。根据地下水埋深和设定的浓度限值,估算了农药对地下水的安全使用量。  相似文献   

8.
有机磷农药乐果降解的研究现状与进展   总被引:2,自引:0,他引:2  
有机磷农药一方面能有效防治农林病虫害,造福于人类,另一方面也给人类赖于生存的环境带来危害。有机磷农药在环境中的降解性能,是评价有机磷农药对环境危害影响的重要指标,有机磷农药在环境中的残留时间越长,对环境的污染及其对各种环境生物,甚至对人类的危害也越大。有机磷农药在环境中的降解,包括微生物降解、光化学降解、化学氧化降解和超声波降解。不同的降解方式,由于影响因素和相关机理的不同,各种降解特性存在着一定的差异。  相似文献   

9.
In recent years, pesticide usage in the United States has increased markedly. As measured in 1980 for the U.S.A., there were: (1) more than 45 000 individually products registered; (2) more than 1500 active ingredients involved; and (3) about 2.5 billion pounds of active ingredients used annually. Pesticide usage in agriculture has probably peaked and will probably level off and may even decrease in the 1980's because of public health concerns, environmental concerns, lower dose levels of newer pesticides, and the introduction and use of integrated pest management programs and bio-control programs.  相似文献   

10.
有机磷农药在土壤环境中的降解转化   总被引:4,自引:0,他引:4  
有机磷农药是世界上应用最广泛的农药种类之一。有机磷农药是属于比较容易降解,而且对环境污染较小的一类农药,从有机磷农药的性质出发,着重讨论了有机磷农药的水解,光解和微生物降解等,在土壤中的主要降解转化过程。  相似文献   

11.
We reviewed organophosphorus pesticide use in Japan between 1982 and 2016 using data from the National Institute of Environmental Studies. Organophosphorus pesticide concentrations in river water throughout Japan were taken from the literature, and risk assessments were performed for some organophosphorus pesticides based on risk quotients and hazard quotients. Assessments were performed for 20 common pesticides, including insecticides, fungicides, and herbicides. The amounts used decreased in the order: insecticides?>?herbicides?>?fungicides. Organophosphorus insecticide and fungicide use have decreased over the last four decades, but organophosphorus herbicide use has increased. During this period, annual organophosphorus pesticide use was the highest for chlorpyrifos (105,263?tons/year) and the lowest for glyphosate-sodium (8?tons/year). The ecotoxicological risk assessment indicated that diazinon and fenitrothion posed strong risks to the Japanese aquatic environment, and chlorpyrifos and malathion have moderate risks. None of the pesticides that were assessed posed significant risks to humans. Continued use of organophosphorus pesticides in Japan may cause strong risks to aquatic environments. These risks should be reassessed periodically.  相似文献   

12.
用于有机磷农药固相萃取的吸附材料的研究进展   总被引:1,自引:0,他引:1  
有机磷农药由于在环境中相对于有机氯农药容易降解,而成为全球范围内使用最广泛的杀虫剂。尽管有机磷农药已经被证实了低环境持久性,但由于具有生物毒性、高毒性、再生毒性、免疫毒性和基因毒性,造成的残留仍能对人类健康产生危害。样品前处理是有机磷农药残留分析过程的重要步骤,该过程耗费时间,其好坏直接影响整个分析结果的准确性。固相萃取相对液-液萃取由于具有诸如快速、简单和绿色环保的特点及较强的选择吸附性,是目前应用最广泛的农药残留分析样品前处理技术。吸附材料是决定固相萃取过程效能的关键因素。文章介绍了常见的硅吸附材料、碳吸附材料、分子印迹吸附材料及磁性吸附材料在有机磷农药固相萃取领域的研究应用现状,同时对未来研究方向进行了展望。  相似文献   

13.
华北平原不同生产模式设施蔬菜生命周期环境影响评价   总被引:3,自引:2,他引:1  
徐强  胡克林  李季  韩卉  杨合法 《环境科学》2018,39(5):2480-2488
全面系统地评价不同生产模式下设施蔬菜生产过程的环境效应,可为降低蔬菜生产过程中的负面环境影响提供理论指导.本文以华北平原河北省曲周县4 a春茬设施茄子生产为例,采用田间实测结合生命周期评价的方法,分析和比较了该地区常规、综合和有机生产模式下设施茄子的生产过程及其对环境的影响.结果表明,3种模式的水体毒性、富营养化和土壤毒性危害潜势对环境影响的贡献较大,分别占82.05%~84.02%、10.29%~12.32%和2.62%~3.48%,且主要发生在农作子系统中,均主要是由氮磷流失、农药残留及有机肥所携带的重金属所致.综合模式的环境影响综合指数最低,为0.596,分别比常规和有机模式降低了30.3%和6.7%,该模式显著降低了设施蔬菜农作子系统的污染物排放,为最佳生产模式.因此,优化田间管理措施(如施用生物农药、优质有机肥和提高氮磷利用效率)可较好地控制蔬菜生产生命周期负面环境影响及提高该地区设施蔬菜生产的环境可持续能力.  相似文献   

14.
The development of the environmentally conserving dike-pond system of integrated agriculture and aquaculture in the Zhujiang Delta of south China is traced to illustrate the impact of environmental changes on technological innovations. The technologies of dike building, land reclamation, pond fish culture, and crop cultivation on dikes, which were either independently developed or modified from ideas brought in by migrant farmers from northern China, represented farmers' efforts to adapt to the new characteristics of a changed environment as population pressure increased. The new technologies revealed the farmers' awareness of the need for environmental conservation. However, increased population pressure also necessitated more intensive use of the land, both in the highland and lowland regions, giving rise to inappropriate dike building and premature reclamation activities, which in turn brought about more frequent flooding in the delta region. Careless application of a new technology tended to have harmful effects on the environment. Political conditions in different periods of China's economic development have also caused changes in the dike-pond system which has to maintain high productivity and profitability. Recent advances in dike-pond system technology have focused on crop diversification and animal husbandry to match the three-dimensional characteristics of its ecological components. New agricultural technologies can be successful in China only if they can provide a balance between land use and conservation.  相似文献   

15.
南京市土地利用与生态环境协调发展研究   总被引:9,自引:2,他引:7  
协调土地利用与生态环境的关系是区域土地利用规划的重要环节. 利用统计分析法、文献资料法,结合实地调研,综合分析评价了南京市不同土地利用类型对生态环境的影响. 结果表明:建设用地对生态环境的影响主要体现在工业污染、城镇生活污染、地质灾害、城市热岛效应等方面. 农业用地对生态环境的影响具有农业面源污染问题严峻,高效生态农业有利于稳定和改善生态环境的两面性. 未利用土地对于维护和改善生态环境意义重大. 针对实际,提出建立不同土地利用类型的环境友好型土地利用模式,协调土地利用与生态环境的关系,并提出进行土地利用的环境影响程度分级研究、加强生态环境研究与监测、优化区域土地利用布局等建议.   相似文献   

16.
在构建邻里效应对农户生物农药施用行为影响的理论模型基础上,利用鄂、赣、浙三省农户的调研数据,实证检验了邻里效应对农户生物农药施用行为的影响,在此基础上,进一步讨论了邻里效应促使稻农施用生物农药的条件与内在作用机制。结果表明:第一,55.76%的样本农户施用过生物农药,且施用生物农药的农户有较强的邻里关系。第二,邻里效应对农户生物农药施用行为有显著的正向影响,且强邻里效应的农户生物农药平均施用量要显著高于弱邻里效应农户。第三,邻里效应对稻农生物农药施用行为的影响存在条件限制,对高收入农户和规模户而言,邻里效应的影响不显著。第四,邻里效应对农户生物农药施用行为有显著直接作用,也通过降低信息搜寻成本和有效规避农业生产风险两条路径间接影响农户生物农药施用行为。  相似文献   

17.
现代石油农业在取得巨大经济社会效益的同时,生产中化肥、农药的过度使用也引发了严重的环境问题.以中国综合社会调查(CGSS2010)的数据为基础,运用多元线性回归模型分析环境污染认识情况及其影响因素.结果表明,居民对农业环境污染认知处于高认可水平;个体的户口、年龄,社会经济地位的个人年收入和受教育年限,环境感知的环境问题严重程度、环境问题关注程度显著影响居民农业环境污染认知.提出通过引导居民形成高度的环境保护意识来改善农业生产环境,确保食品安全.  相似文献   

18.
黄河三角洲地区农业环境现状与污染防治措施   总被引:3,自引:0,他引:3  
刘宗斌 《环境科学与管理》2007,32(2):149-150,179
在黄河三角洲地区,近几年来,农业生产得到快速发展,农用薄膜、化肥和农药的使用量也逐年增加,由于人们环保意识薄弱,致使农业环境受到污染.农田连续覆膜十年以上,土壤中农膜残留量可达55~60kg/hm2;果园和蔬菜保护地栽培连续五年以上的地块,土壤中有机磷农药检出率高达80%以上;化肥用量连续五年达到每年1500~2000kg/hm2的农田,土壤有机质下降0.18~0.23%,团粒结构减少4.1~5.3%,总孔隙度减少11.4~13.8%,土壤的理化性能严重下降.通过对农业环境主要污染因素和污染现状分析,采取相应的防治措施,对保护农业环境,促进农业和农村经济的可持续发展有十分重要的意义.  相似文献   

19.
Ever increasing attention is being paid to the environmental impact of intensive agricultural practices, and in this context organic farming is gaining recognition as a relatively friendly production system. In general, the risk of harmful environmental effects is lower with organic than with conventional farming methods, though not necessarily so. This review examines organic farming in the light of European conditions with special regard to recent research findings from Denmark. It specifies the environmental problems caused by modern farming practices and discusses appropriate indicators for assessing their impact. A driving force-state-response (DSR) framework is employed to organise and understand the processes and mechanisms that lie behind the impact of agriculture on nature and the environment. Important groups of environmental indicators are selected that characterise (a) the aquatic environment (nitrate and phosphorus leaching), (b) the soil (organic matter, biology and structure), (c) the ecosystem (arable land, semi-cultivated areas, small biotopes and landscape), and (d) resource usage and balances (nitrogen, phosphorus, potassium and energy use).The paper also reviews several empirical studies. With regard to soil biology, organic farming is usually associated with a significantly higher level of biological activity (bacteria (Monera), fungi (Mycota), springtails (Collembola), mites (Arachnida), earthworms (Lumbricus terrestris)), due to its versatile crop rotations, reduced applications of nutrients, and the ban on pesticides. In most cases there is also a lower surplus of nutrients and less leaching with organic than with conventional farming. However, poor management (e.g., the ploughing of grass and legumes (Fabates) at the wrong time of year with no subsequent crops to capture the mineralised nitrogen), low self-sufficiency in feed, and problems with certain production systems (such as those involved in organic pig farming, i.e., grazing sows, low crop yields), can lead to a high level of leaching in some organic systems. Organic farming is faced with a need to expand and develop in line with increasing demands for organic food and growing environmental concerns. This requires closer attention to the goals, values and principles on which organic practices are based, and more research into the influence of organic farming on different aspects of the environment.  相似文献   

20.
Although pesticide regulatory tools are mainly based on individual substances, aquatic ecosystems are usually exposed to multiple pesticides from their use on the variety of crops within the catchment of a river. This study estimated the impact of measured pesticide mixtures in surface waters from 2002 and 2008 within three important Portuguese river basins (‘Mondego’, ‘Sado’ and ‘Tejo’) on primary producers, arthropods and fish by toxic pressure calculation. Species sensitivity distributions (SSDs), in combination with mixture toxicity models, were applied. Considering the differences in the responses of the taxonomic groups as well as in the pesticide exposures that these organisms experience, variable acute multi-substance potentially affected fractions (msPAFs) were obtained. The median msPAF for primary producers and arthropods in surface waters of all river basins exceeded 5%, the cut-off value used in the prospective SSD approach for deriving individual environmental quality standards. A ranking procedure identified various photosystem II inhibiting herbicides, with oxadiazon having the relatively largest toxic effects on primary producers, while the organophosphorus insecticides, chlorfenvinphos and chlorpyrifos, and the organochloride endosulfan had the largest effects on arthropods and fish, respectively. These results ensure compliance with European legislation with regard to ecological risk assessment and management of pesticides in surface waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号