首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以城市污水处理厂产生的污泥为原料,对其进行焚烧得到污泥焚烧灰。在对污泥焚烧灰进行表征的基础上,研究了利用污泥焚烧灰对水中Cd2+的吸附。结果表明,吸附效率随吸附时间、污泥焚烧灰投加量和初始pH的增加而增加;而温度的影响不明显。在吸附时间为80 min,污泥焚烧灰投加量为10 g/L,初始pH为5~7,温度为30℃的最佳工艺条件下,当Cd2+浓度低于10 mg/L,污泥焚烧灰对水中Cd2+的去除率可达99%以上。废水中的Cu2+会对Cd2+的吸附产生抑制作用,而Cr6+影响微弱。污泥焚烧灰对Cd2+的吸附过程符合Langmuir吸附等温式,吸附过程主要是物理吸附,吸附量可达17.94 mg/g。  相似文献   

2.
氯化锌为活化剂污泥含碳吸附剂用于含六价铬废水的吸附实验。实验以静态吸附的操作方式,考察了吸附剂的投加量、吸附时间、废水的pH值对目标污染物的去除率的影响,并对其吸附模型进行了探讨。结果表明:对于含六价铬废水吸附实验最佳的吸附条件是吸附剂投加量不少于0.7g,吸附平衡时间是90min,溶液pH值小于2,溶液的初始浓度为20mg/L。朗格缪尔模型比弗兰德利希模型更适合用于描述污泥含碳吸附剂对该废水的吸附,其饱和吸附量为8.285mg/g。  相似文献   

3.
汪莉  陈尧  蒋文举  雍晓蕾 《环境科学与技术》2011,34(11):118-121,129
文章对比研究了污泥活性炭(AC)和1%软锰矿改性的污泥活性炭(ACP)对溶液中Cu2+的吸附特性,考察了时间、pH值和吸附剂投加量等因素对吸附反应的影响。结果表明:室温下,180 min后Cu2+吸附达到平衡,pH=4.8时吸附效果最优;伪二阶动力学方程和Langmuir吸附等温方程能很好地拟合两种污泥活性炭的吸附反应。通过计算,室温下,改性前后的污泥活性炭Langmuir模型的饱和吸附量Qm分别是78.13 mg/g和94.34 mg/g。在初始浓度200 mg/L,pH=5,吸附剂投加量为2g/L时,1%软锰矿改性的污泥活性炭对Cu2+的最大吸附量为90.15 mg/g,比未改性时提高了23.33%。  相似文献   

4.
对碳素纤维进行氧化改性,利用改性后的碳素纤维处理近岸污染海水,重点研究了改性碳素纤维对海水中活性磷酸盐和活性硅酸盐的吸附作用。考察了碳素纤维液相改性时间、碳素纤维投加量、活性磷酸盐初始浓度、活性硅酸盐初始浓度、吸附时间、海况、pH值等单因素对近岸海洋污染物磷酸盐、硅酸盐吸附效果的影响。研究结果表明:改性碳素纤维对硅酸盐的吸附效果较好,去除率可达70%,对活性磷酸盐的去除率为31%左右。通过正交实验确定改性碳素纤维材料修复模拟近岸海水的优化条件为:碳素纤维改性时间为1.5 h,投加量为0.01 g,硅酸盐初始浓度为3mg/L,磷酸盐初始浓度为20 mg/L,海况为3级,pH值为8,吸附时间为3 h。在此条件下,碳素纤维对磷酸盐的去除率可达31.06%,硅酸盐去除率可达70.88%。  相似文献   

5.
微波酸活化粉煤灰吸附酸性大红染料废水实验研究   总被引:3,自引:0,他引:3  
以微波酸活化改性后的粉煤灰为吸附剂,对酸性大红染料废水进行吸附脱色处理,考察了吸附时间、pH值、吸附剂投加量等对吸附脱色效果的影响。在酸性大红染料溶液初始浓度为100 mg/L、pH=5、活化粉煤灰投加量为10 g/L吸附1 h时,活化粉煤灰对酸性大红的脱色效果较好,去除率可达96%。对实验数据进行相关数学模型拟合,结果表明微波酸活化改性后的粉煤灰吸附去除酸性大红的等温吸附平衡符合Langmuir吸附等温式,改性前后的吸附过程动力学符合准二级吸附动力学模型,线性相关系数良好。  相似文献   

6.
碱改性净水污泥对水中氨氮的吸附效能研究   总被引:2,自引:0,他引:2  
采用氢氧化钠浸渍法改性净水污泥,研究了碱改性净水污泥对水中NH+4的去除性能.同时,考察了模拟废水pH、吸附剂投加量、NH+4初始浓度、吸附温度及吸附时间对吸附性能的影响.结果表明,当pH为弱酸性或中性,投加碱改性净水污泥20 g·L-1时,在室温下对初始浓度为50 mg·L-1的NH+4模拟废水振荡吸附120 min,可达到氨氮排放二级标准.将实验数据分别用吸附等温模型和动力学模型进行拟合,发现净水污泥对NH+4的吸附符合Langmuir模型和二级动力学模型,且净水污泥对氨氮的吸附包括静电吸引和离子交换两种作用机理.  相似文献   

7.
通过颗粒强度测定、扫描电镜分析(SEM)、X射线能谱分析(EDS)和零电点测定(pHPZC)考察改性前后沸石表面特性的变化,考察pH值、沸石投加量、初始氨氮浓度以及温度对吸附过程的影响,并通过吸附等温式和吸附动力学对吸附机制进行描述.经过NaCl改性后的沸石的颗粒强度明显增大,表面更加粗糙,孔径增大,钠离子通过交换作用进入到沸石内部.pH值为7,沸石投加量为8g/L,温度为35℃时吸附效果最好,平衡吸附量(qe)与氨氮初始浓度呈正相关性.Langmuir等温线比Freundlich等温线更适合描述实验数据,最大饱和吸附量为13.210mg/g.吸附动力学符合准二级动力学模型.实验表明NaCl改性沸石能够有效去除水中的氨氮.  相似文献   

8.
为了应对水体中六价铬的污染问题,文章研究了活性氧化铝(AA)对六价铬的吸附效果。实验考察了吸附过程中的影响因素pH、六价铬初始浓度、投加量和吸附时间对吸附效果的影响。研究结果表明:活性氧化铝对六价铬的吸附效果受pH的影响较大,六价铬的去除率随着pH值的升高先升高然后降低,最佳pH为3,去除率为84.04%。六价铬的去除率随着活性氧化铝的投加量和吸附时间的增加逐渐升高然后趋于稳定,最佳的投加量和吸附时间分别为10 g/L和90 min,去除率分别为87.34%和84.04%。随着初始浓度的不断上升,六价铬的去除率逐渐下降。在原水条件下的吸附速度和吸附容量都比在纯水条件下低。平衡吸附数据符合Freundlich和Langmuir吸附等温线模型。活性氧化铝对六价铬吸附效果非常好,可以作为去除水中六价铬的吸附剂。  相似文献   

9.
氯化锌为活化剂污泥含碳吸附剂用于含六价铬废水的吸附实验。实验以静态吸附的操作方式,考察了吸附剂的投加量、吸附时间、废水的pH值对目标污染物的去除率的影响,并对其吸附模型进行了探讨。结果表明:对于含六价铬废水吸附实验最佳的吸附条件是吸附剂投加量不少于0.7g,吸附平衡时间是90min,溶液pH值小于2,溶液的初始浓度为20mg/L。朗格缪尔模型比弗兰德利希模型更适合用于描述污泥含碳吸附剂对该废水的吸附,其饱和吸附量为8.285mg/g。  相似文献   

10.
选取碳酸盐岩处理矿山酸性废水的污泥作为水中磷的去除材料,研究pH、温度、污泥投加量和接触时间对磷去除作用的影响,以及在此过程污泥中重金属的释放情况.试验表明:当水中磷浓度为10 mg/L,温度25℃,接触时间10 min,污泥投加量0.5 g,pH为7时,磷的去除率达到99.9%以上.实验中污泥有少量重金属的释放,但仍...  相似文献   

11.
Soil contaminated with heavy metals cadmium(Cd)and lead(Pb)is hard to be remediated.Phytoremediation may be a feasible method to remove toxic metals from soil,but there are few suitable plants which can hyperaccumulate metals.In this study,Cd and Pb accumulation by four plants including sunflower(Helianthus annuus L.),mustard(Brassica juncea L.),alfalfa(Medicago sativa L.), ricinus(Ricinus communis L.)in hydroponic cultures was compared.Results showed that these plants could phytocxtract heavy metals, the ability of accumulation differed with species,concentrations and categories of heavy metals.Values of BCF(bioconcentration factor)and TF(translocation factor)indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals.Changes on the biomass of plants,pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures.Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals,such as pH and Eh regulations,and so forth.  相似文献   

12.
The oxidation of As(Ⅲ) with potassium permanganate was studied under conditions including pH, initial As(Ⅲ) concentration and dosage of Mn(Ⅶ). The results have shown that potassium permanganate was an effective agent for oxidizing of As(Ⅲ) in a wide pH range. The pH value of tested water was not a significant factor affecting the oxidation of As(Ⅲ) by Mn(Ⅶ). Although theoretical redox analyses suggest that Mn(Ⅶ) should have better performance in oxidization of As(Ⅲ) within lower pH ranges, the experimental results show that the oxidation efficiencies of As(Ⅲ) under basic and acidic conditions were similar, which may be due to the adsorption of As(Ⅲ) on the Mn(OH)2 and MnO2 resulting from the oxidation of As(Ⅲ).  相似文献   

13.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

16.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

17.
The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (∑CBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ∑ CBs in waterweeds ranged from 13.53×102 μg/g to 38.27×102μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs(DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County < Yunan County <Yun'an County < Gaoyao County according to the ∑CBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River.  相似文献   

18.
以三峡大学的校园河道求索溪为研究对象,利用综合水质标识指数法确定求索溪水质类别,分析其水质时空变化规律,并利用对应分析法得出求索溪中不同监测点的主要污染因子.研究结果表明:求索溪整体的综合水质标识指数为7.423,整体水质为劣V类(地表水环境质量标准GB 3838-2002)且黑臭.从时间变化来看,求索溪4月份的水质最差,5月份次之,4、5月份所有监测点的水质都劣于V类且黑臭;8月份水质最好,水质为Ⅳ类;从空间分布来看,8个监测点综合水质标识指数均超过6.0,水质为劣V类,其中6号监测点的水质相对最好,监测点3号的水质相对最差;对应分析法得出求索溪的整体水体污染程度受总氮因子的影响最大,其次为总磷.该研究拟为求索溪及类似校园河道的水环境治理研究提供基础依据和参考.  相似文献   

19.
Degradation of 2,4-dichlorophenol(2,4-DCP)was studied in a novel three-electrode photoelectrocatalytic(PEC)integrative oxidation process,and the factors influencing the degradation rate,such as applied current,flow speed of O_2,pH,adscititious voltage and initial 2,4-DCP concentration were investigated and optimized.H_2O_2 was produced nearby cathode and Fe~(2 )continuously generated from Fe anode in solution when current and O_2 were applied,so,main reactions,H_2O_2-assisted TiO_2 PEC oxidation and E-Fenton reaction,occurred during degradation of 2,4-DCP in this integrative system.The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process,while it was only 31% in E-Fenton process and 46% in H_2O_2-assisted TiO_2 PEC process.So,it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect.By the investigation of pH,it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.  相似文献   

20.
The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied.Serial concentrations of the pesticides with the addition of copper ion were spiked in the soil and incubated for a regular period of time,the analysis of the extracts from the soil was carried out using gas chromatography (GC).The photodegradation of pyrethroids in water system was conducted under UV irradiation.The effect of Cu~(2 ) on the pesticides degradation was measured with half life (t_(0.5)) of degradation.It was found that a negative correlation between the degradation of the pyrethroid pesticides in soil and Cu addition was observed.But Cu~(2 ) could accelerate photodegradation of the pyrethroids in water.The t_(0.5) for cyhalothrin extended from 6.7 to 6.8 d while for cypermethrin extended from 8.1 to 10.9 d with the presence of copper ion in soil.As for photodegradation,t_(0.5) for cyhalothrin reduced from 173.3 to 115.5 rain and for cypermethrin from 115.5 to 99.0 min.The results suggested that copper influenced the degradation of the pesticides in soil by affecting the activity of microorganisms.However, it had catalyst tendency for photodegradation in water system.The difference for the degradation efficiency of pyrethroid isomers in soil was also observed.Copper could obviously accelerate the degradation of some special isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号