首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
通过对西安污水处理厂生物强化一级处理出水试验研究,得出生物强化一级处理对污水中主要污染指标的处理效果,在生物一级强化处理设计中,在回流污泥量为20%的情况下,为安全计,初沉池的沉淀时间可设计为40 min,即可达到沉降要求.因而将污水厂A2/O剩余活性污泥与进水混合进入初沉池沉淀,可以增强沉淀效果,编短沉降时间,减少初沉池容积,减少基建投资费用.  相似文献   

2.
活性污泥过程反应池与二沉池耦合模型与模拟   总被引:3,自引:2,他引:1       下载免费PDF全文
将二沉池一维通量模型与反应池活性污泥2号模型(ASM2)耦合,建立了活性污泥过程模型.模型应用于重庆某污水处理厂,结果表明,该模型可以较好地对出水中COD、SS、TN及TP进行模拟.针对该污水处理厂现行运行条件,分析了影响活性污泥系统的因素,提出优化运行参数,将二沉池污泥回流比由原来的0.75减至0.20~0.25,剩余污泥排放量从原来的591m3/d至204~249m3/d;将反应池污泥浓度由原来的1.2g/L增加至2.8g/L,可提高系统抗负荷冲击和抗低温的能力,改善系统出水水质.  相似文献   

3.
周圆  支丽玲  郑凯凯  王燕  李激 《环境工程》2020,38(7):100-108
反硝化过程是影响污水处理厂出水总氮达标排放的重要环节之一,进水碳源、回流比、溶解氧(DO)和搅拌方式等均为影响活性污泥反硝化性能的重要因素。通过对太湖流域58座污水处理厂提标改造的运行效果进行评估分析,并对水质波动规律、工艺设计及设备设施等方面进行调研及优化分析,研究了不同条件对活性污泥反硝化速率的影响,探讨了污水处理厂在实际生产运行中反硝化脱氮过程主要存在的问题及对策。结果表明:各厂反硝化速率在0~5.18 mg NO3--N/(g VSS·h)时,平均反硝化速率为1.40 mg NO3--N/(g VSS·h),进水碳源浓度较低为各个污水处理厂反硝化速率较低的主要原因。其中外加碳源的种类、投加点位对反硝化脱氮具有较大的影响,在各厂进水中投加易降解碳源并保持较高的搅拌速率后,发现反硝化潜力为1.16~20.80 mg NO3--N/(g VSS·h),表明改善进水水质并创造较好的反硝化条件,有利于整体反硝化水平的提升。此外,充分的搅拌条件也可增强污泥的反硝化性能。另外,选择合适的内回流比可以有效强化生物反硝化脱氮性能,但内回流中高DO对反硝化影响较大,降低回流DO可以有效提高NO3--N去除量。  相似文献   

4.
强化内源反硝化脱氮及污泥减量化研究   总被引:5,自引:1,他引:4  
为提高传统污水处理工艺内源反硝化脱氮效率,在系统内部实现污泥减量,设计了水解酸化/缺氧/好氧(H/A/O)生物脱氮及污泥减量化工艺.试验采用连续流处理装置,以实际生活污水为研究对象.结果表明,在进水COD(220~410 mg/L)、NH4 -N(36~58 mg/L)、总水力停留时间为11h、硝化液回流比为300%、无外加碳源和碱度条件下,COD、NH4 -N和TN的平均去除率分别超过90%、95%和75%.在缺氧段碳源充足的条件下,随着硝化液回流比的增加,系统TN平均去除率升高;当碳源不足时,随着硝化液回流比的增加,系统TN平均去除率降低.污水经水解酸化预处理后,反硝化速率大大升高.水解酸化段利用水解酸化作用对回流剩余污泥的减量达到56.2%,污水、污泥经过水解酸化处理,大大提高了系统脱氮效率.以水解酸化作为传统的城市污水及污泥处理工艺,既可有效地改善污水的可生化性,提高系统污染物平均去除率,增强污水处理系统运行的稳定性,又可实现污水、污泥一体化处理.  相似文献   

5.
太原市某污水处理厂各工段重金属含量分析   总被引:2,自引:0,他引:2  
张智春 《环境保护科学》2011,37(2):26-28,94
以太原市某污水处理厂的实际工艺为例,采集各工段污水、污泥为样,对传统活性污泥法水处理工艺运行中的镍、镉、锌、铜的质量浓度进行了分析,结果表明,部分活性污泥回流到初沉池后发现部分重金属在沉淀池中的去除率较高.  相似文献   

6.
间断处理的活性污泥处理(SBR)可以比传统的连续处理活性污泥处理节省投资20%。因为所需的罐和泵,同时由于没有污泥回流,可节省动力,因此,运转费也可以节省20%。单池处理能力可以达到1,000米~3/时。此外,采用 SBR 可对流量变化作出快速反应,并可方便地改变供氧速率、搅拌和微  相似文献   

7.
选取五种常用无机混凝剂,把活性污泥与生活污水按一定比例混合后,进行混凝试验,结果表明,三氯化铁去除TP的效果最好,在投加量为99 mg/l时,可去除污水中88%的TP。三种混凝剂FeCl3、PFS、PAFC与PAM复合进行参数优化的正交试验,对TP有最佳处理效果的絮凝条件为:投加FeCl3,投加量为99 mg/l,投加顺序为FeCl3先投加1 min,以污泥恰搅起不分层的速度搅拌(约160 r/min)30 min。试验结果对投加混凝剂活性污泥法选择合适的混凝剂有借鉴作用。  相似文献   

8.
强化生物吸附法处理生活污水   总被引:1,自引:0,他引:1  
通过对强化生物吸附反应器的生物培养与驯化、反应时间、强化微生物活性、污泥回流比等因素的研究 ,确立了强化生物吸附工艺的正常运行参数 ,为该工艺的设计提供了理论依据。采用强化生物吸附法处理生活污水 ,可以减少生活污水常规处理的构筑物 ,对COD ,BOD5,SS ,NH3 N均有较好的去除效果 ,适量投加混凝剂可以提高出水水质  相似文献   

9.
基因工程菌生物强化MBR工艺处理阿特拉津试验研究   总被引:11,自引:6,他引:5  
刘春  黄霞  孙炜  王慧 《环境科学》2007,28(2):417-421
以生活污水为共基质,考察了基因工程菌在MBR和活性污泥反应器中对阿特拉津的生物强化处理效果,以及生物强化处理对污泥性状的影响.结果表明,基因工程菌在MBR中对阿特拉津具有很好的生物强化处理效果,阿特拉津平均出水浓度为0.84 mg/L,平均去除率为95%,最大去除负荷可以达到70 mg/(L·d).生物强化的MBR对生活污水中COD的平均去除率为71%,COD平均出水浓度65 mg/L,COD容积负荷增加对COD去除效果有一定影响;对生活污水中的氨氮具有很好的去除效果,氨氮平均出水浓度为1.1 mg/L,平均去除率为97%,最大氨氮去除负荷为143 mg/(L·d).与普通MBR污泥相比,生物强化MBR污泥的硝化活性和亚硝化活性略高,碳氧化活性略低,因此表现出氨氮处理效果很好,COD处理效果略差.阿特拉津的存在会对污泥性状产生影响,可能是造成污泥碳氧化活性低的原因.  相似文献   

10.
由于矿区生活污水中有机污染物浓度较低,采用活性污泥法处理工艺,有机污染物在生物氧化池内得到较彻底地降解,剩余污泥量少,每千吨生活污水产生剩余污泥量为2~3t。  相似文献   

11.
厌氧、缺氧、好氧环境下富磷剩余污泥的释磷机制   总被引:4,自引:2,他引:2  
以采用A/O生物强化除磷工艺水质净化厂排出的富磷剩余污泥为研究对象,利用棕色消化瓶设计3组释磷试验,讨论厌氧、缺氧、好氧环境下富磷剩余污泥消化释磷的机制. 结果表明:富磷剩余污泥在厌氧和缺氧环境下均有明显的释磷现象,平均释磷速率分别为1.614和0.998 mg/(L·d);厌氧和缺氧环境下释磷量与聚β-羟基丁酸(PHB)之间的计量关系比较表明,释磷过程中包含有明显的微生物释磷机制,同时还存在着物理化学方面引起的释磷机制,硝酸盐抑制剩余污泥中磷的释放主要是通过影响其微生物学机制完成的.   相似文献   

12.
探讨污泥中丝状真菌对污泥脱水性能的影响及其机制,对生物法强化污泥脱水技术的发展具有重要意义.本研究从剩余污泥中分离筛选可以提高污泥脱水性能的丝状真菌,并分析其改善污泥脱水性能的具体机制.结果表明,在剩余污泥中存在着可以促进污泥脱水性能改善的丝状真菌,从中分离筛选出1株毛霉属的真菌Mucor circinelloides ZG-3,该菌对改善污泥脱水性能具有良好的效果.该丝状真菌处理剩余污泥过程中污泥的脱水性能改善效果主要受到接种方式、接种浓度和污泥含固率的影响,其最适接种方式为菌丝体接种,最适接种浓度为10%,最适污泥含固率约为4%.在最适条件下处理污泥可使污泥比阻降低75.1%,显著改善污泥的脱水性能,并且处理后污泥溶液的COD值约为310 mg·L-1,处理后的污泥仍具有良好的沉降性能.M.circinelloides ZG-3处理剩余污泥过程中,污泥脱水性能的改善主要与污泥胞外聚合物(EPS)的降解和污泥p H的降低有关.因此,采用M.circinelloides ZG-3处理剩余污泥是一种非常有潜力的新型污泥调理技术.  相似文献   

13.
污泥上清液的有机物浓度及其生物降解性   总被引:2,自引:0,他引:2  
在进行城市生活污水的生物处理过程中,会产生一定量的生化污泥。在浓缩和处理剩余污泥时,所产生的含高浓度有机物的污泥上清液被回流到污水处理系统,不适当的回流会增加水处理系统的负荷并严重影响,出水的水质。实验证明,在污泥浓缩中,污泥上清液中有机物含有与浓缩温度成e指数关系,与浓缩时间成小于1的指数关系。  相似文献   

14.
陈海平  周立祥  王世梅  梁剑茹 《环境科学》2009,30(11):3364-3370
城市污泥通常含有大量有机质但也存在数量不等有害金属,在不影响污泥有益成分的基础上,去除和回收污泥中金属,既使污泥无害化又产生经济效益,意义重大.针对苏州某工业园区污泥重金属含量较高,研究利用生物沥浸-溶剂萃取-电积技术回收城市污泥中重金属Cu的工艺,并探讨了采用5-壬基水杨醛肟萃取剂M5640从城市污泥生物沥浸液中萃取分离Cu和Fe的最佳工艺参数.结果表明,经过生物沥浸处理72 h后,城市污泥中重金属Cu溶出率高达90%.当最佳工艺条件为:萃取剂体积分数为2%,相比(有机相与水相体积比,以O/A表示)为1/3,沥浸液pH为2.0时,沥浸液中Cu的一级萃取率达到95%以上,而Fe的共萃率低于10%;反萃取试验结果表明,在反萃取相比为2/1的条件下用1.5 mol/L硫酸溶液进行反萃取,Cu的一级反萃取率达到80.07%;反萃取后的富集Cu溶液作为电解液,在槽电压为2.1 V、电解温度为55℃条件下电积6 h,Cu回收率达到90%以上.在整个工艺中萃余液和反萃液均可循环利用无废液排放,对含Cu高的污泥,利用生物沥浸-溶剂萃取-电积技术回收有良好的应用前景.  相似文献   

15.
利用城市实际污水考察了ρ(MLSS)在2 400、3 350、4 300和5 250 mg/L 4种工况下SBR反应器(厌氧/好氧/缺氧/再好氧/沉淀/排水/预缺氧运行模式)的脱氮除磷效果,并分析了反应器单个周期内有机物、氮和磷的转化过程及污泥产量. 结果表明:ρ(MLSS)由2 400 mg/L升至5 250 mg/L时,系统TN去除率由52.5%升至66.6%;后续缺氧及预缺氧工序的脱氮比例(该工序TN去除量占系统TN总去除量的比例)由12.7%增至23.1%;ρ(MLSS)为4 300 mg/L时系统TP去除率(75.6%)达到最大. 后续缺氧及预缺氧工序中,ρ(MLSS)与内源反硝化速率呈正相关(R2=0.703 7);提高ρ(MLSS)可使PAOs(聚磷菌)在下一个周期内获得更多的碳源,使厌氧释磷量由1.62 mg/L升至9.10 mg/L,但PAOs吸磷动力会减弱,对除磷不利. 在后置反硝化、污泥衰减、能量解偶联等减量机制共同作用下,ρ(MLSS)为4 300 mg/L时系统污泥减量可提高24.4%. 从脱氮除磷及污泥减量效果综合考虑,ρ(MLSS)是双重后置反硝化工艺重要的控制参数,在该研究条件下控制在4 300 mg/L最优.   相似文献   

16.
以城市污水处理厂污泥为培养基,研究了添加Pb2+对Bt(Bacillus thuringiensis,苏云金芽孢杆菌)生长和晶体蛋白合成的影响,同时分析了Bt发酵过程中有效态Pb含量(以ρ计)的变化,并采用FTIR(傅立叶红外光谱)和XPS(X射线光电子能谱),初步探讨了Pb2+在Bt表面的作用机制.结果表明:污泥培养基在支持Bt生长代谢和降低重金属有效态含量方面均优于商用培养基,当初始ρ(Pb2+)高达400 mg/L时,与未添加Pb2+相比,污泥培养基中Bt活菌数与晶体蛋白产量约分别下降48%和54%,而商用培养基中约分别下降82%和75%,证实了污泥作为Bt发酵培养基的可行性;Bt对Pb2+有较好的耐受性,当ρ(有效态Pb)在80 mg/L以下时,Bt生长代谢不会受到显著影响.光谱学分析表明,Bt对Pb2+有少量吸附,从而降低Bt发酵过程中Pb的生物有效性,吸附位点主要为羟基,部分C O和S O也参与了吸附反应.  相似文献   

17.
污泥是污水处理的副产物,是污水处理过程的延续和必然要求.截至2017年,长江经济带11省市污泥产量接近2 000×104 t/a,大量污泥没有得到妥善处置,严重制约着“长江水质根本好转”目标的实现.厌氧消化与好氧发酵是两种主流的污泥生物处理技术,都已有广泛的应用案例,但是也存在运营不畅的现象.为识别长江大保护中污泥生物处理项目的问题并提出解决方案,分析了长江经济带的污泥产率及性质,梳理了污泥生物处理技术的发展及适用性.结果表明:长江经济带各省市污泥产量约占全国污泥产量的40%,污泥产率普遍低于全国平均水平,长江经济带各省市污泥有机质含量低于55%,pH为中性、总养分含量超过5.0%、重金属含量存在超过GB 4284—2018《农用污泥污染物控制标准》标准限值的风险;高级厌氧消化、协同厌氧消化和高含固厌氧消化等技术的发展破解了由于长江经济带污泥有机质含量普遍较低而导致的污泥厌氧消化稳定性低的问题,降低了污泥厌氧消化工程的成本;污泥好氧发酵过程重金属钝化技术的发展在一定程度上破解了由于长江经济带污泥重金属含量过高而导致的污泥发酵产物出路不畅的问题.研究显示,污泥生物处理技术仍具有一定的局限性,但通过合适的规划,污泥生物处理技术可与其他污泥处理处置技术高效耦合,具有广泛应用于长江大保护污泥处理处置项目的潜力.   相似文献   

18.
窦晓敏  陈德珍  戴晓虎 《环境科学》2014,35(11):4359-4364
提出一种污泥预植重金属炭化后固定的概念,并以重金属Cu为代表,以CuCl2的形式植入;研究了在不同Cu预植浓度、不同温度下炭化后污泥本身以及额外添加的重金属在炭中的保留率以及稳定特性,同时采用不同的浸出方法,确定与污泥炭最终处置目标相关的最大可预植量.结果表明,在污泥中Cu的预植量为0.5%(质量分数,以Cu元素计)时,经过热解炭化,90%以上的Cu都保留在污泥炭中,其固定效果与温度有关,400℃以上时,炭化温度越高,Cu越容易浸出.在污泥中预植重金属Cu存在最大容量限制,最大可预植量与污泥炭最终处置目标有关,若选择在卫生填埋场进行填埋,则Cu的预植量不宜超过0.5%.本研究提供了一种污泥包裹其他含重金属的废料共炭化实现无害化的新思路,从而达到用污泥治废的效果.  相似文献   

19.
活性污泥系统动力学模拟方法的综合分析   总被引:4,自引:1,他引:4  
活性污泥法的应用现状和污水中氮磷排放标准的日益严格,使得传统数学模型已满足不了目前的要求,需要对活性污泥系统复杂的动力学规律进行有效模拟。文章在综合分析活性污泥动态模型国内外研究现状的基础上,介绍了3种占主流地位的模型:活性污泥数学模型、神经网络模型和混合模型。这3种模型在污水处理的设计、运行控制和工艺优化等方面各有其独到之处。  相似文献   

20.
芬顿/絮凝组合工艺在处理难降解有机物废水时会产生大量的芬顿污泥,会提高废水处理成本,同时也会对环境构成威胁,迫切需要开发一种绿色可持续的方法实现芬顿污泥资源化利用.该研究通过将处理PNP(对硝基苯酚)废水产生的芬顿污泥和污水厂生化污泥共热解,原位制备具有高催化活性的MBC(磁性生物炭),并作为多相芬顿催化剂用于去除PNP,实现“以废治废”.结果表明:当芬顿污泥和生化污泥质量比为1∶1、热解温度为800℃时,制备得到的MBC-800-3催化性能最佳;合适的混合比例可有效避免颗粒聚集,高温形成缺陷结构和多种铁相,为MBC-800-3提供了丰富的反应活性位点;当废水初始pH为3、H2O2浓度为60 mmol/L、MBC-800-3投加量为0.4 g/L时,PNP和TOC(总有机碳)的去除率均最高,在催化反应100 min时分别达到98%和62%;酸性条件下,MBC活化H2O2产生·OH和·O2-催化降解废水的有机物,其中,·OH作为主要活性物种,其来源包括均相芬顿反应和非均芬顿相反应...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号