首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
采用超声波联合十二烷基苯磺酸钠(LAS)和烷基聚葡糖苷(APG1214)修复柴油污染土壤。考察了表面活性剂浓度、液固比、超声时间、超声波功率、超声温度等对柴油去除效果的影响。当表面活性剂浓度为4g/L,液固比为20∶1,超声波功率为500 W,在25℃下超声15 min,使用APG1214去除柴油效果优于LAS,对不同污染程度土壤柴油的去除率分别达到78.8%、88.1%及90.5%。  相似文献   

2.
采用活性炭对皂素废水进行吸附处理,研究了活性炭投加量、吸附时间及吸附次数对皂素废水色度去除率的影响.同时,研究了在微波辐照条件下,微波功率和辐照时间对吸附皂素废水后的活性炭脱附的影响.结果表明,当活性炭投加量为0.13g·mL-1时,吸附12h后皂素废水的色度去除率为96.17%.此条件下活性炭可以重复吸附皂素废水3次(按照色度去除率70%为限).当微波功率为500W、辐照时间为30min时,活性炭可被有效地再生,活性炭的再生率可达79.75%.  相似文献   

3.
王贝贝  朱湖地  陈静 《环境工程》2013,31(2):96-98,108
采用微波技术对土壤中Cd进行玻璃化固定研究,考察了微波辐照功率、助熔剂硼砂和微波敏化剂活性炭对玻璃化效果的影响。结果表明:延长辐照时间和增大微波功率,土壤外观发生明显团聚结晶的玻璃化现象,Cd的固定率显著升高。微波(539 W)辐照5 min,Cd的固定率可达95%以上。硼砂可显著降低土样的熔融温度,从而缩短微波时间,降低能耗。添加活性炭显著提高Cd的固定率而粒径对Cd的固定率影响不显著。微波作用形成的玻璃体结构致密结实,Cd的浸出浓度满足国家标准限值,使得污染土壤资源化的实现具有一定的可行性。  相似文献   

4.
为了实现高浓度制药废水的处理,采用微波强化Fenton氧化体系对污水进行预处理,考察了微波功率、微波辐照时间、催化剂用量和氧化剂用量对高浓度有机废水中有机物去除效果的影响。来水COD 39 760 mg/L,B/C为0.254,控制微波功率为200 W、微波辐照时间11 min,加入0.6 mol/L的Fe(NO_3)_3催化剂、30%H_2O_2 4 mL/L氧化剂,COD去除率可达62.41%,B/C由0.254升至0.619。实现有机物去除,提高污水可生化性。  相似文献   

5.
微波辐照再生载苯酚活性炭的实验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
在无载气、无预处理条件下,将载苯酚的饱和活性炭放入微波炉中再生.通过改变微波辐照功率、辐照时间、能量密度、活性炭处理量和活性炭再生次数,研究微波再生活性炭的效果及影响因素.结果表明,活性炭再生率随微波辐照功率、辐照时间和能量密度的增加而逐渐提高,且高微波辐照功率更有利于活性炭再生和能量利用.10 g饱和活性炭在700 W微波辐照功率下再生5 min,再生率为74%,而在300 W微波辐照功率下再生45 min,再生率可达96%;此外,活性炭再生量越大,能量利用率也越高.研究还表明,微波辐照能实现活性炭的反复多次再生,再生炭的吸附性能可部分或完全恢复.微波再生载苯酚活性炭过程中,部分苯酚随水分蒸发,大部分苯酚经高温裂解为CO2,少部分裂解为链状有机物或缩合为环状有机物.   相似文献   

6.
该文研究了超声波联合非离子表面活性剂Triton X-100修复芘污染土壤的效果及不同因素对修复效果的影响。结果表明:增加处理次数有助于提升土壤中芘的去除率,3次处理总去除率较1次处理提高了30%。Triton X-100浓度的增加,可提高污染土壤中芘的去除率,且Triton X-100浓度为10.0 g/L时较2.0 g/L时去除率提高了18.90%。水土比为12∶1时,芘去除率达到峰值,水土比过高或过低芘去除率都会降低。随着超声时间的增加去除率呈现先升高后降低的趋势,超声时间为20 min时,对土壤中浓度为0.4 g/kg的芘去除率达到最高的75.30%。相同条件下对低浓度芘污染土壤的处理效果好于高浓度污染土壤,芘浓度为0.1 g/kg的土壤去除率比1.0 g/kg的土壤上升了46.70%。该研究结果表明超声波和表面活性剂联合处理技术具有一定的应用于土壤修复的价值和潜力。  相似文献   

7.
活性炭吸附处理锂电池厂含酯废水及微波再生实验   总被引:2,自引:0,他引:2       下载免费PDF全文
采用活性炭吸附的方法对锂电池产生的含酯废水进行预处理,研究了吸附时间、初始pH值和活性炭投加量对废水COD去除的影响.吸附饱和后的活性炭用微波进行再生,考察了辐照时间、微波功率及再生次数对活性炭再生效果的影响.结果表明,当活性炭投加量为10g/L时,吸附60min,含酯废水的COD去除率为69.5%,可生化性从原水的0.05提高到0.25.当微波功率为420W、辐照时间为6min时,活性炭可被有效地再生,再生效率高达98.0%,活性炭损失率约为5.2%.再生前后活性炭的红外光谱图表明,活性炭表面官能团发生了变化,促进活性炭对污染物质的吸附.  相似文献   

8.
活性炭吸附处理锂电池厂含酯废水及微波再生实验   总被引:1,自引:0,他引:1       下载免费PDF全文
采用活性炭吸附的方法对锂电池产生的含酯废水进行预处理,研究了吸附时间、初始pH值和活性炭投加量对废水COD去除的影响.吸附饱和后的活性炭用微波进行再生,考察了辐照时间、微波功率及再生次数对活性炭再生效果的影响.结果表明,当活性炭投加量为10g/L时,吸附60min,含酯废水的COD去除率为69.5%,可生化性从原水的0.05提高到0.25.当微波功率为420W、辐照时间为6min时,活性炭可被有效地再生,再生效率高达98.0%,活性炭损失率约为5.2%.再生前后活性炭的红外光谱图表明,活性炭表面官能团发生了变化,促进活性炭对污染物质的吸附.  相似文献   

9.
微波协同活性炭催化氧化处理含酚废水的研究   总被引:1,自引:0,他引:1  
在微波辐射条件下,采用活性炭处理含酚废水。结果表明微波催化氧化工艺对苯酚的处理效果明显优于单纯活性炭吸附与单纯微波辐射工艺。通过正交实验得出微波处理的最佳条件:活性炭用量1.0 g,微波功率600 W,微波时间3 min。在该条件下,选用2号活性炭对苯酚浓度为600 mg/L的模拟水样进行处理,含酚废水中的酚去除率达到67.79%。  相似文献   

10.
微波诱导催化剂CuO/γ-Al_2O_3处理活性艳蓝的研究   总被引:1,自引:0,他引:1  
采用均匀包裹沉淀法制得的CuO/γ-Al2O3催化剂,利用XRD对催化剂的物相结构进行了表征,并应用于微波诱导氧化工艺中,考察了催化剂投加量、微波功率、微波辐照时间等因素对活性艳模拟废水处理效果的影响。结果显示,在催化剂投加量为2g/L,微波功率为720W,辐照时间为3min的条件下,处理50mg/L的活性艳蓝脱色率可达到95.3%。  相似文献   

11.
对微波辅助均相催化氧化处理吡虫啉农药废水进行了研究,通过考察H2O2投加量、均相催化剂Fe2+浓度、微波辐照时间及功率、废水温度、废水pH值等因素对该农药废水COD处理效果的影响,获得了最佳工艺条件:即100ml初始COD浓度为268mg/L的农药废水,H202投加量为26.52g/L,均相催化剂Fe2+浓度为109.8mg/L,在微波功率119W,辐射时间为4min,pH为6的条件下,COD去除率可达78.51%。  相似文献   

12.
微波诱导氧化处理雅格素红BF-3B150%染料废水的研究   总被引:13,自引:0,他引:13  
以颗粒活性炭为催化剂 ,建立了微波诱导氧化工艺 ,对雅格素红BF 3B15 0 %染料废水进行了有效处理 .分别考查了废水初始浓度、微波功率、微波辐照时间、活性炭粒径、活性炭用量和废水pH值对废水处理效果的影响 .该工艺对稀释 10 0倍后的实际废水 (原水COD为 2 82 4 0mg·L-1)最佳处理工艺条件为 :微波辐照时间 6min、微波辐射功率 6 5 0W、活性炭用量为 8g、活性炭粒径 2 0目以下 ,微波诱导催化氧化在酸性条件下比在碱性条件下的处理效果要好 .在此工艺条件下 ,废水脱色率达99 6 %、COD去除率达 96 8% .微波辐射雅格素红染料废水脱色表观反应动力学研究表明 ,该反应近似一级反应 ,动力学常数为 0 735 1min-1,半衰期为 0 94min .微波诱导氧化、活性炭吸附和单纯微波辐射 3种不同工艺的对比实验表明 ,微波诱导氧化工艺具有明显的优越性 ,且不会对环境造成二次污染  相似文献   

13.
以污水厂剩余污泥为原料,采用微波辐照硫酸活化的方法制备污泥活性炭。微波功率、辐照时间和硫酸浓度对污泥活性炭吸附性能具有显著影响,在最佳工艺条件微波功率500W、微波辐照时间240s、硫酸浓度25%~30%条件下制得的活性炭碘值为476.25mg/g,亚甲基蓝吸附量为12.20mg/g。  相似文献   

14.
活性炭吸附-微波催化氧化处理番茄酱加工有机废水   总被引:3,自引:1,他引:2  
采用活性炭吸附-微波催化氧化技术处理番茄酱加工有机废水,考察了活性炭添加量、H2O2用量、辐射时间以及微波功率对废水处理效果的影响。确定微波催化氧化条件为:微波功率630w、辐射时间15min、H2O2用量0.9mL、活性碳用量1.5g/100mL。在此条件下对废水进行处理,废水的COD、TOC和BOD去除率分别为87.3%,84.4%和82.3%,处理时间由2h缩短为15min。结果表明,该方法是一种快速有效的处理番茄酱加工有机废水的方法。  相似文献   

15.
采用低强度超声波强化SBR法处理经超声空化预处理后的焦化废水,通过设置超声波强化的SBR反应器与对照反应器的对比试验,研究了超声波对SBR的强化效果,对超声波参数、作用时间等因素进行了系统优化。试验结果表明,采用适当参数的低强度超声辐照能显著增强污泥活性,提高处理效果。当超声波功率为8 W、频率为25 kHz、辐照时间为10 min、作用周期为12 h时,处理效果达到最佳,COD和氨氮的去除率比未经超声强化的对照组分别高出44.3%和39.8%。  相似文献   

16.
重度滴滴涕污染土壤低温等离子体修复条件优化研究   总被引:1,自引:1,他引:0  
采用介质阻挡放电产生的低温等离子体对重度滴滴涕(DDTs)污染土壤进行修复处理实验,主要研究了土壤性质参数(土壤粒径和土壤含水量)和设备工作参数(放电功率、处理时间和放电气氛)对DDTs去除的影响.结果表明,采用介质阻挡放电产生的低温等离子体对土壤中的DDTs具有较好的去除作用,去除率随着处理时间的增加而升高.当处理时间增加至20min时,DDTs的去除率为95.3%~99.9%.同时确定优化条件为:放电功率1 kW、处理时间20 min、空气放电气氛、土壤粒径0~0.9 mm以及土壤含水量4.5%~10.5%.研究结果还表明,o,p’-DDE可能是o,p’-DDT氧化脱氯脱氢的中间产物.  相似文献   

17.
活性炭微波再生方法研究   总被引:1,自引:0,他引:1  
以亚甲基兰为污染物污染活性炭滤芯,利用微波辐照的方法对失效的活性炭滤芯进行再生,通过实验分别测出新的、失效的活性炭滤芯的碘值,通过碘值计算出活性炭的性能恢复率、损耗率、综合恢复率等性能指标,并分析影响上述性能指标的单一因素:辐照功率、时间和活性炭用量。设计正交试验,找到微波再生活性炭滤芯的最佳再生条件:微波功率600W,辐照时间90s,辐照活性炭质量2g。经过再生的活性炭的综合恢复率达到94.30%。  相似文献   

18.
针对炼油厂油泥浮渣处理难题,采用微波-超声工艺对油泥浮渣进行预处理,并对反应产物进行分析.通过L25(52)和L16(43)正交试验分析了微波-超声共同作用对油泥浮渣去除率的影响,优化了微波时间、微波功率、超声时间、超声温度、超声功率等工艺参数.结果表明:微波-超声对油泥浮渣中石油类的去除率较高,在微波时间为4 min...  相似文献   

19.
微波催化氧化法预处理垃圾渗滤液的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
采用微波-活性炭-Fenton催化氧化预处理垃圾渗滤液,研究了不同因素对垃圾渗滤液处理效果的影响.结果表明,COD和氨氮去除率随活性炭用量、微波辐射时间和微波功率增加而增加;随Fe2+用量和H2O2用量增加,COD和氨氮去除率先增加而后下降;随pH值增加,氨氮去除率显著增加,COD去除率变化不明显.在微波功率为300W,pH值为8,活性炭9g/L,Fe2+用量为0.02mol/L,H2O2用量为7mL/L,辐射时间6min条件下,垃圾渗滤液中COD和氨氮去除率分别达到68.22%和78.08%,SS去除率达到78.55%,浑浊度去除率达到99.02%,颜色由黑褐色去除为接近无色,BOD5/COD由0.21提高到0.45;研究比较了不同处理对垃圾渗滤液的处理效果.结果显示,微波催化氧化对垃圾渗滤液中COD和氨氮去除率明显高于其他处理.  相似文献   

20.
微波诱导Fenton试剂氧化降解水中对硝基氯苯   总被引:3,自引:1,他引:2  
采用微波辐射诱导Fenton氧化工艺处理对硝基氯苯模拟废水。考察了H2O2用量、Fe2+用量、溶液pH、微波辐射时间、微波功率对降解效果的影响;比较了微波诱导Fenton氧化法和单纯的Fenton氧化法对对硝基氯苯的去除效果。结果表明,微波辐射不仅可以提高对硝基氯苯的去除效率,还可促进对硝基氯苯的矿质化,大大提高COD去除率,并缩短反应时间。微波诱导Fenton氧化降解对硝基氯苯的适宜工艺条件为:H2O2和Fe2+用量分别为3.0g/L和160mg/L、pH为3、微波功率为800W、微波辐射时间为10min。在此工艺条件下,对硝基氯苯和COD的去除率分别可达98.9%和90.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号