首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
孔石莼(Ulva pertusa)对铅、铜、镉的吸收   总被引:1,自引:0,他引:1  
研究了大型藻孔石莼对铅、铜和镉的吸收动力学和热力学过程。结果表明,暴露于不同浓度的重金属体系中的孔石莼对铅、铜和镉的积累量随着水相中的游离态浓度的增加而增加,可以用Langmuir吸附等温式从热力学平衡角度加以描述,铅和镉饱和结合量分别为:0.715mg/g干重,Cd^2+为0.037mg/g干重;在孔石莼对铜(0.056mg/L)吸收动力学浓度的实验中,第4天达到了吸收平衡,蓄积量为对照组的9.01倍;在镉暴露浓度为0.028mg/L的实验中,第5天达吸收平衡,蓄积量为对照组的5.06倍。  相似文献   

2.
耐铅、铜微生物的筛选及吸附性能研究   总被引:1,自引:0,他引:1  
采用浓度梯度筛选的方法,从重金属污染土壤中分离筛选到两株耐受和吸附铅、铜的细菌G、Y。用单因素的方法得到G最适的培养条件为.T=30℃;pH=6.O;NaCl浓度为0.5%;Y的最适培养条件分别为:T=37℃;pH=8.5;NaCl浓度为0.5%。用原子吸收分光光度法测得,G、Y的冻干菌体对Pb2+、Cu2+的吸附量分别为:G铅 126.42mg/g,G铜75mg/g,Y钢61.08mg/g,Y钢45.86mg/g。G湿菌体对铅、铜的吸附率分别为:G铅94.66%,G铜92.84%;Y湿菌体对铅、铜的吸附率分别为:Y铅99.74%,Y铜97.96%。经检测,其遗传性状稳定。可进一步开发为重金属吸附剂。  相似文献   

3.
用稻米壳吸附去除废水中的铜离子和铅离子   总被引:1,自引:0,他引:1  
稻壳是一种廉价的生物质吸附剂,用于从废水中去除铜、铅离子。研究了吸附时间、pH值、加入量与粒径、金属离子初始浓度等因素对吸附去除水中铜、铅离子的影响。实验结果表明:在最佳吸附条件下,稻壳对初始浓度为4mg/L铜离子、10m班铅离子的吸附量分别为0.62和2.09mg/g,去除率分别为63%和83%。同时,Cu^2+和Pb^2+在天然稻壳上吸附的热力学行为与Langmuir吸附等温式吻;动力学数据研究表明,吸附满足;隹二级动力学模型。稻壳将是去除废水中Cu^+和Pb^2+有潜质的材料。  相似文献   

4.
在沈阳市张士地区采集蔬菜和植物样品,采用(PE-AA300)原子吸收光谱分析仪对样品中的铜、铅、镉进行分析测定。通过对植物样品中重金属元素的测定,发现菊科中铜的含量最高,槐树叶中铅的含量最高,菊科镉含量最高。通过对蔬菜样品中重金属元素的分析,得出蔬菜中各元素平均含量分别为:铜的平均含量为6.197mg/kg;铅的平均含量为1.419mg/kg;镉的平均含量为0.137mg/kg。  相似文献   

5.
研究了活性碳纤维ACF及经氧化及碱化改性后的活性碳纤维对重金属离子的动态吸附,采用Boehm滴定、比表面积及孔隙分析等方法表征了改性前后ACF的表面结构和表面化学性质。考察了流速、浓度、吸附剂用量及吸附剂类型对吸附效率的影响。结果表明:低浓度、低流速、低吸附剂(ACF)用量,均有利于ACF对重金属离子的吸附;改性后的ACF在吸附容量及穿透时间上均优于未改性的ACF,以经碱化改性ACF的效果最佳,其饱和吸附量为225.62 mg/g,是未改性ACF饱和吸附量55.42 mg/g的4倍。在混合离子的吸附中,对铅离子的吸附能力强于铜离子和镉离子。  相似文献   

6.
污染水体重金属形态分布的化学平衡模式   总被引:4,自引:1,他引:4  
研究了湘江霞湾江段重金属污染区内镉、铅和铜的形态分布化学平衡模式,该模式体系包括12种金属和12种配体,涉及134个络合反应、42个沉淀反应和2个混合固体沉淀、5个氧化-还原反应、3种金属在颗粒物上的吸附反应。模拟研究了重金属沉淀的边界和区域,实验测定了该江段河水与重金属的络合容量和络合物的条件稳定常数作为有机配体的计算参数,考察了该江段悬浮沉积物对重金属吸附的表面络合常数作为吸附反应的输入参数。计算得到了该江段不同站位镉、铅和铜的形态分布,其结果与形态分析实测和水质分析结果基本一致。  相似文献   

7.
系统研究了硝基还原假单胞菌对重金属镉的吸附特性与吸附机理.研究结果表明,此株菌可以耐受200mg/L重金属镉,而进一步提高镉离子的浓度则会显著抑制该菌的生长.将该菌株接种至含20、50和100mg/L Cd~(2+)的液体LB培养基中,经过120h的培养,镉的去除率分别能达到94.3%,91.0%和86.0%.系统研究了pH值、温度、盐浓度和多种重金属离子存在下,该菌株对溶液中镉离子去除效果的影响.结果表明,硝基还原假单胞菌可以在pH值为4~8范围内有效吸附镉离子,当NaCl溶液提升至1mol/L时,该菌株仍可耐受,并且可以吸附除了铅离子之外的多种重金属离子.X射线光电子能谱分析结果显示,吸附后Cd~(2+)的结合能发生了变化.扫描电镜结果显示,与正常菌株相比,吸附镉的菌株产生明显形变,且表面有白色颗粒状物质吸附,结合X射线光电子能谱分析结果,可以说明生物矿化是该菌株吸附和钝化重金属的途径之一.  相似文献   

8.
土壤中重金属镉锌铅复合污染的研究   总被引:52,自引:2,他引:52  
采用吸附与解吸实验及盆栽试验,研究了在重金属镉、锌、铅复合污染条件下,棕壤对重金属的吸附、解吸规律,以及菠菜吸收重金属的特点。结果表明:棕壤对铅、锌的吸附分别符合Langmuir、Freundlich方程,对镉的吸附用Langmuir、Freundlich及Temkin方程回归都不显。重金属被吸附后的解吸率顺序为:Zn〉Cd〉Pb。Pb^2+与吸附位结合的牢固程度较单一污染时大,而Cd^2+和Z  相似文献   

9.
对华南某金矿下游河道砷、镉分布特征进行了初步研究,在金矿下游河道沿程布设7个沉积物采样点及两个河道断面,分析了沉积物及断面土壤的砷、镉、铬、铜、镍、铅、锌含量。采用Tessier连续提取法分析沉积物中砷、镉等重金属的形态。砷含量高达10 20870 621 mg/kg,镉含量达2.870 621 mg/kg,镉含量达2.810.2 mg/kg。沉积物中砷、铅元素含量沿水流方向总体呈现减少趋势,铬、铜元素含量沿水流方向呈现增加趋势,镉元素含量沿水流方向先增加后减少。上游断面沉积物砷、镉等重金属浓度由河流中泓线向河岸方向增加,砷含量由16 617 mg/kg增加至53 197 mg/kg;下游断面则反之,砷含量由16 860 mg/kg减少至384mg/kg。沉积物中砷、镉等重金属元素主要以铁锰氧化态、有机结合态和残渣态的形式存在。  相似文献   

10.
以活性炭纤维(Activated Carbon Fiber,ACF)为吸附剂,研究吸附剂投加量、时间、初始溶液pH和重金属浓度等影响因素对二元溶液中Pb(II)和Cd(Ⅱ)去除效果的影响。实验结果表明,ACF适应的pH范围宽(3.0~5.6),吸附平衡时间短(2 min),对Pb(Ⅱ)和Cd(Ⅱ)的吸附容量随溶液pH增加而增大。在溶液pH为5.6,ACF用量为0.004 g/L时,ACF对Pb(Ⅱ)和Cd(Ⅱ)的吸附容量分别为232.4和33.8 mg/g。ACF对Pb(Ⅱ)的吸附满足Freundlich等温吸附模型,对Cd(II)的吸附满足Langmuir等温吸附模型。环境扫描电镜照片显示ACF在吸附铅镉二元溶液后,表面聚集很多细小颗粒物,能量色散X射线光谱仪分析进一步验证颗粒物的主要组成为铅和镉元素,红外光谱分析则表明Pb(Ⅱ)和Cd(Ⅱ)与ACF的表面官能团结合实现了ACF对废水中Pb(Ⅱ)和Cd(Ⅱ)的去除。  相似文献   

11.
鄱阳湖-乐安河湿地水土环境中重金属污染的时空分布特征   总被引:10,自引:7,他引:3  
选取流域两岸富含有色金属矿产资源的乐安河及至鄱阳湖段的典型湿地区域,分别于2012年4月(平水期)、8月(丰水期)、11月(枯水期)等不同时段采集不同样点底泥、表土、上覆水等环境样品,监测分析重金属Cu、Pb、Cd的含量,并借助统计分析方法识别乐安河湿地重金属污染的时空分布特征及其来源.结果表明,乐安河流域各样点的重金属Cu含量最高,且各样点重金属的含量值均表现为Cu>Cd>Pb.以丰水期的重金属污染最严重,平水期次之,枯水期的重金属污染最轻.重金属Cu含量的高值区出现在乐安河上游;而重金属Pb含量的高值区出现在乐安河下游及入湖区域;重金属Cd的高值区出现在乐安河中游.表征重金属Cu污染的主成分贡献率为36.99%,表征重金属Cd的主成分贡献率为30.12%.底泥Cu和上覆水Cu、河滩表土Cu含量具有较强的相关性;底泥Cd和表土Cd的含量也表现出强相关性.以上结果反映出水体、底泥和土壤中的Cu污染或Cd污染的来源具有一致性,主要来源于矿山开采排放的重金属酸性污废水;而其余组分间的相关性则表现不甚明显,反映出不同污染物的来源存在一定的差异性.  相似文献   

12.
海藻生物吸附废水中铅、铜和镉的研究   总被引:59,自引:2,他引:59  
对几种大型海藻作国吸附剂,吸附重金属废水中Pb^@+、Cu^2+、Cd^2+的吸附容量和吸附速度进行了研究,得出了它们对Pb^2+、Cu^2+、Cd^2=平衡吸附的等温曲线。实验表明,海藻的最大吸附容量在0.8~1.6mmol/g(干重)之间,吸附容量比其他种类的生物体高得多。吸附速度较快,10min内,重金属从溶液中的去除率可达到90%。实验结果还表明,大型海藻适合于发展成为高效的生物吸附材料用  相似文献   

13.
总结了活性炭吸附法去除废水中重金属的机理和规律进行了,其吸附机理有离子交换、络合、化学吸附等,吸附平衡模式除了有Langmuir模式和Freundlich模式之外,还有表面络合模式;分析了pH、溶液的离子强度和初始浓度对单组分溶液吸附去除率的影响;论述了多个金属离子共存时活性炭对金属离子的吸附影响以及金属离子与有机物共存时活性炭对金属离子的吸附影响;最后展望了活性炭在重金属废水处理中的应用前景,提出了一些建议。  相似文献   

14.
为了探究稻草生物炭对土壤中重金属Cd2+和Pb2+的吸附机制,采用水稻秸秆在500℃下热解制备稻草生物炭,设置不同吸附时间、Na+和Ca2+离子强度、pH等影响因素,拟合稻草生物炭对重金属的吸附动力学、吸附等温线;在此基础上,采用黄沙模拟土柱试验得出稻草生物炭固定Cd2+和Pb2+的穿透曲线,着重分析比较pH和Na+离子强度对稻草生物炭吸附固定重金属的影响.结果表明:在高pH、低离子强度下,稻草生物炭对重金属的吸附效果较好;当pH为6时,稻草生物炭对Pb2+、Cd2+的吸附效率分别为92.58%、63.36%;当离子强度为10 mmol/L时,稻草生物炭对Pb2+、Cd2+的最高吸附效率分别为97.58%、68.35%;准二级动力学模型能很好地拟合稻草生物炭对Pb2+、Cd2+的吸附规律,拟合系数(R2)均大于0.995 8,表明稻草生物炭吸附速率主要由化学吸附机制决定;此外,稻草生物炭对Pb2+的吸附规律适合采用Langmuir等温吸附模型进行描述,而对Cd2+的吸附规律采用Langmuir和Freundlich等温吸附模型均能进行很好的模拟,表明稻草生物炭对Pb2+的吸附是近似单分子层吸附,而对Cd2+的吸附存在多分子层吸附.由黄沙土柱模拟试验结果得出,稻草生物炭对Pb2+和Cd2+的滞留率随着pH的升高和离子强度的降低而增强.在Pb2+和Cd2+同时存在条件下,当pH为6、离子强度为1 mmol/L、稻草生物炭按黄沙质量的0.5%投加时,稻草生物炭对土柱中Pb2+、Cd2+的滞留效果最好.研究显示,高pH对稻草生物炭吸附固定重金属起到促进作用,而高离子强度对稻草生物炭吸附固定重金属起到抑制作用.   相似文献   

15.
铁锰双金属材料对砷和重金属复合污染土壤的稳定化研究   总被引:7,自引:0,他引:7  
由于矿产资源的共生、伴生现象及历史上采选冶技术的相对落后,我国矿区附近的重金属污染场地多存在复合污染的情况,而稳定化技术是解决该问题的有效措施.本文通过室内模拟培养实验和静态吸附试验,研究了人工合成的铁锰双金属材料(FMBO)对矿区复合污染土壤中As、Pb、Cd等重金属的稳定化作用和机制.毒性浸出实验结果表明,在3种不同的As和重金属复合污染土壤中,FMBO材料能够对As和Pb等重金属起到较好的稳定化作用,在5%的最大添加量下,FMBO对As、Pb的稳定化效率分别能够达到95.2%~100%和95.5%~97.5%,同时不会引起Cd、Zn和Cu等重金属的活化.由连续提取实验结果可知,FMBO能够使土壤中As和Pb由酸可提取态向可还原态转变,稳定性增强.微观特征分析结果表明,FMBO材料对As的稳定化主要通过表面羟基(—OH)基团的吸附作用,而对Pb、Cd等金属离子则通过吸附、沉淀等多种方式起作用.总体看来,FMBO材料适用于As、Pb等重金属复合污染土壤的治理.  相似文献   

16.
Spatial distribution of heavy metals, arsenic and organic matter in recent sediments in the Hangzhou section of the Grand Canal and their relationships were analyzed. The results showed that the concentrations of heavy metals and organic matters varied widely along the canal, and the average geological accumulation factors decreased in the following orders: organic carbon(2.6), zinc(2.1 ), cadmium(2.0), copper( 1.5), lead(1.1), nitrogen(0.9), mercury (0.8), phosphorus(0.4), arsenic(0.2) and chromium(0). Content of heavy metals and organic carbon in the top 10 cm layer were lower than that of lower layers, except for mercury and organic carbon in the S9 section. Contents of organic carbon in the top 50 cm layer of the mud sediments are significantly higher than those undemeath. In the bottom mud layer, there is a concentration peak of the pollutants. In the mud sediments of the canal, cadmium mainly occurred in the Fe and Mn oxide fraction, copper in the organic fraction, lead in the Fe and Mn oxide fraction, and zinc in the carbonate and the Fe and Mn oxide fraction.  相似文献   

17.
通过现场海水采样、室内样品处理和数据分析,对辽河河口水体中的Cd、Cr、As、NH3-、Hg、Cu和Pb等七种金属45个监测站位进行了调查研究,并采取美国环保局推荐的健康风险评价模型对辽河河口的水环境进行了初步的健康风险评价。结果表明,金属的浓度范围分别为Cd:0.23~0.93μg/L,Cr:0.8~8.3μg/L,As:0.29~0.51μg/L,NH3-:7.59~322μg/L,Hg:0.007~0.135μg/L,Cu:2.4~6.2μg/L,Pb:0.11~0.69μg/L;基因毒物质(Cd、Cr、As)对人体健康危害的个人年均风险要远远大于躯体毒物质(NH3-、Hg、Cu、Pb),其中Cr对人体健康危害的个人年均风险最大。并把水环境的综合影响情况划分成了5个等级,影响最为严重的区域是研究区域的西北部,主要原因是该区域是大凌河口区域。  相似文献   

18.
以城市污泥为主要原料制备了污泥基活性炭(SAC),考察了其对重金属离子的吸附去除效能和吸附动力学规律.并选择了2种商品活性炭(煤质炭,MAC和椰壳炭,YAC)作为对比,以初始浓度为50mg/L的Cu(II),Pb(II),Cd(II),Cr(VI)4种重金属离子为去除对象,分别进行了3种活性炭的表面理化性质分析及其对4种重金属离子的吸附试验.结果表明,SAC的比表面积和微孔容积仅为YAC和MAC的1/3~1/2,吸附速率也相对较慢,但其对Cu(II),Pb(II),Cr(VI),Cd(II)的平衡吸附量却远大于2种商品活性炭,分别为9.9,8.9,8.2,5.4mg/g,说明SAC表面的高酸性基团含量对重金属离子的吸附起到了关键作用;Langmuir与Freundlich吸附等温模型均能较好地拟合SAC对Cu(II)和Pb(II)的吸附,SAC对Cr(VI)的吸附过程更符合Langmuir模型,而SAC对于Cd(II)的吸附过程用Langmuir与Freundlich两个模型均不能较好地拟合,说明SAC表面缺少能够与Cd(II)发生反应的结合位点.  相似文献   

19.
目前对焚烧烟气中重金属的控制以活性炭烟气喷射技术为主,然而该吸附剂高温(>150℃)下性能较差,吸附温度窗口较窄,因此开发耐高温非碳基吸附剂对于焚烧烟气中重金属的控制意义较大.以硼酸及三聚氰胺作为前驱体原料,将硫脲作为硫源掺杂进前驱体,经高温扩散后制备得到一种新型硫掺杂改性氮化硼(S-BN)吸附剂,并进行气相重金属高温吸附试验研究.结果表明:①S-BN吸附剂表面呈棱状结构,内部孔隙结构明显,不同S掺杂摩尔比下的形貌结构有一定差异.S-BN吸附剂内部孔体积范围为0.17~0.39 cm3/g,孔径分布范围为0.85~284.39 nm,平均孔径为2.95~4.19 nm,属于典型的中介孔多孔吸附剂.②当S掺杂摩尔比为0.50且1 300℃下煅烧5 h时,获得的S-BN吸附剂比表面积最大,达524.17 m2/g.S-BN吸附剂对气相重金属的最佳吸附温度为150~200℃.吸附过程中前5 min的吸附速率较快,并且在10 min内基本达到吸附饱和状态.③吸附过程动力学拟合分析发现,低温下S-BN吸附剂对重金属的吸附过程以物理吸附为主导,随着温度的升高,吸附过程逐渐转变为以化学吸附为主导.研究显示,该试验制得的新型S-BN吸附剂拥有较高的比表面积,其对气相重金属的饱和吸附量可以达到54.15~74.13 mg/g,对于气相重金属锌的吸附能力是活性炭的1.9~10.0倍,并且在相对高温(300℃)的吸附条件下仍可以保持较好的吸附能力.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号