首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The cultivation of aerobic granules in sequencing batch reactor for the biodegradation of p-cresol was studied. The reactor was started with 100 mg/L of p-cresol. Aerobic granules first appeared within one month of start up. The granules were large and strong and had a compact structure. The diameter of stable granules was in the range of 1-5 mm. The integrity coefficient and granules density was found to be 96% and 1046 kg/m3, respectively. The settling velocity of granules was found to be in the range of 2× 10-2-6× 10-2 m/sec. The aerobic granules were able to degrade p-cresol upto 800 mg/L at a removal efficiency of 88%. Specific p-cresol degradation rate in aerobic granules followed Haldane model for substrate inhibition. High specific p-cresol degradation rate up to 0.96 g p-cresol/(g VSS. day) were sustained upto p-cresol concentration of 400 mg/L. Higher removal efficiency, good settling characteristics of aerobic granules, makes sequencing batch reactor suitable for enhancing the microorganism potential for biodegradation of inhibitory compounds.  相似文献   

2.
Performance of a hybrid reactor comprising of trickling filter(TF) and aeration tank(AT) unit was studied for biological treatment of wastewater containing mixture of phenol and m-cresol,using mixed microbial culture.The reactor was operated with hydraulic loading rates(HLR) and phenolics loading rates(PLR) between 0.222-1.078m3/(m2·day) and 0.900-3.456kg/(m3·day),respectively.The efficiency of substrate removal varied between 71%-100% for the range of HLR and PLR studied.The fixed film unit showed better substrate removal efficiency than the aeration tank and was more resistant to substrate inhibition.The kinetic parameters related to both units of the reactor were evaluated and their variation with HLR and PLR were monitored.It revealed the presence of substrate inhibition at high PLR both in TF and AT unit.The biofilm model established the substrate concentration profile within the film by solving differential equation of substrate mass transfer using boundary problem solver tool ’bvp4c’ of MATLAB 7.1 software.Response surface methodology was used to design and optimize the biodegradation process using Design Expert 8 software,where phenol and m-cresol concentrations,residence time were chosen as input variables and percentage of removal was the response.The design of experiment showed that a quadratic model could be fitted best for the present experimental study.Significant interaction of the residence time with the substrate concentrations was observed.The optimized condition for operating the reactor as predicted by the model was 230mg/L of phenol,190mg/L of m-cresol with residence time of 24.82 hr to achieve 99.92% substrate removal.  相似文献   

3.
李婷  任源  韦朝海 《环境科学》2013,34(7):2899-2905
针对生物降解过程容易受到外界不利环境影响及低浓度下动力学效率不高的问题,制备了具有吸附功能的微生物固定化载体并研究了对间甲酚的降解.在聚乙烯醇(polyvinyl alcohol,PVA)固定化载体中加入海藻酸钠(sodium alginate,SA)、聚羟基丁酸酯(poly-3-hydroxybutyrate,PHB)和粉末活性炭(activated carbon,AC),采用循环冷冻-解冻结合硼酸法制备了具吸附功能的PVA-SA-PHB-AC复合载体,并用其包埋固定化1株间甲酚优势降解菌Lysinibacillus cresolivorans,考察了载体微观结构、稳定性及扩散性对固定化微生物降解间甲酚的影响.结果表明,PVA-SA-PHB-AC载体比表面积和平均孔径分别为15.30m2.g-1和33.68 nm,对间甲酚的吸附容量和扩散系数分别为3.86 mg.g-1和5.62×10-8m2.min-1,可稳定使用60 d以上;固定化L.cresolivorans的间甲酚去除为吸附-降解的耦合,去除速率由载体传质速率与微生物降解速率共同决定,间甲酚浓度低于350 mg.L-1时,载体传质速率小于微生物降解速率,间甲酚去除速率由传质速率决定,浓度高于380 mg.L-1时相反;添加了吸附剂的载体扩散系数会减小,但能耐受更高的底物浓度,且在更宽的浓度范围可以实现高效的降解作用.间甲酚的降解规律及其差异性显示出经吸附功能改性的载体因传质作用的加强而实现反应动力学的提高,并且存在一个合理的浓度区间.  相似文献   

4.
从焦化废水厂的活性污泥中筛选间二甲苯混合降解菌,并研究非离子型表面活性剂吐温80(C_(64)H_(124)O_(26))对混合菌降解间二甲苯的强化作用.研究结果表明:驯化后的间二甲苯混合降解菌以产黄杆菌属(Rhodanobacter sp.)为主,占比41.2%;仅存在吐温80作为单一碳源时,高浓度的吐温80对混合降解菌没有明显的抑制作用;吐温80与间二甲苯共存时,当吐温80浓度为2 CMC,反应72 h后间二甲苯的降解率达到最高,为76%;提前12 h(较混合降解菌)投加浓度为2 CMC的吐温80,最利于菌种的生长繁殖及间二甲苯的降解.  相似文献   

5.
李晶  饶婷  李巍  李轶 《环境科学学报》2011,31(10):2109-2116
对恶臭假单胞菌(Pseudomonas putida LY1)共代谢降解苯酚和4-氯苯酚(4-CP)系统进行了降解实验和动力学研究.结果表明,恶臭假单胞菌可以有效地降解苯酚,苯酚浓度为50mg·L-1时细菌生长速度最快,4-氯苯酚浓度的增加会对细菌产生一定的抑制作用.同时,用改进的Haldane方程模拟恶臭假单胞菌LY...  相似文献   

6.
An acclimatized mixed microbial culture, predominantly Pseudomonas sp., was enriched from a sewage treatment plant, and its potential to simultaneously degrade mixtures of phenol and m-cresol was investigated during its growth in batch shake flasks. A 22 full factorial design with the two substrates at two di erent levels and di erent initial concentration ranges (low and high), was employed to carry out the biodegradation experiments. The substrates phenol and m-cresol were completely utilized within 21 h when present at low concentrations of 100 mg/L for each, and at high concentration of 600 mg/L for each, a maximum time of 187 h was observed for their removal. The biodegradation results also showed that the presence of phenol in low concentration range (100–300 mg/L) did not inhibit m-cresol biodegradation. Whereas the presence of m-cresol inhibited phenol biodegradation by the culture. Moreover, irrespective of the concentrations used, phenol was degraded preferentially and earlier than m-cresol. A sum kinetics model was used to describe the variation in the substrate specific degradation rates, which gave a high coe cient of determination value (R2 > 0.98) at the low concentration range of the substrates. From the estimated interaction parameter values obtained from this model, the inhibitory e ect of phenol on m-cresol degradation by the culture was found to be more pronounced compared to that of m-cresol on phenol. This study showed a good potential of the indigenous mixed culture in degrading mixed substrate of phenolics.  相似文献   

7.
The phenol and m-cresol biodegradations were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that C. tropicalis exhibited the increased capacity of phenolic compounds degradation after laser irradiation. It could degrade 2600 mg/L phenol and 300 mg/L m-cresol by 5% inoculum concentration, respectively. In the dual-substrate biodegradation system, 0–500 mg/L phenol could accelerate m-cresol biodegradation, and 300 mg/L m-cresol could be completely utilized within 46 hr at the presence of 350 mg/L phenol. Besides, the maximum biodegradation of m-cresol could reach 350 mg/L with 80 mg/L phenol within 61 hr. Obviously, phenol, as a growth substrate, could promote CTM 2 to degrade m-cresol, and was always preferentially utilized as carbon source. Comparatively, low-concentration m-cresol could result in a great inhibition on phenol degradation. In addition, the kinetic behaviors of cell growth and substrate biodegradation were described by kinetic model proposed in our laboratory.  相似文献   

8.
The phenol and m-cresol biodegradations were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that C. tropicalis exhibited the increased capacity of phenolic compounds degradation after laser irradiation. It could degrade 2600 mg/L phenol and 300 mg/L m-cresol by 5% inoculum concentration, respectively. In the dual-substrate biodegradation system, 0-500 mg/L phenol could accelerate m-cresol biodegradation, and 300 mg/L m-cresol could be completely utilized within 46 hr at the presence of 350 mg/L phenol. Besides, the maximum biodegradation of m-cresol could reach 350 mg/L with 80 mg/L phenol within 61 hr. Obviously, phenol, as a growth substrate, could promote CTM 2 to degrade m-cresol, and was always preferentially utilized as carbon source. Comparatively, low-concentration m-cresol could result in a great inhibition on phenol degradation. In addition, the kinetic behaviors of cell growth and substrate biodegradation were described by kinetic model proposed in our laboratory.  相似文献   

9.
耐低温苯酚降解菌的降解动力学研究   总被引:4,自引:0,他引:4  
研究耐低温菌在15℃水温条件下对不同浓度苯酚的生物降解作用,采用反应动力学方程拟合其降解过程。结果表明:菌株在低温下可降解苯酚,当菌体质量浓度一定时,苯酚降解率及平均降解速率主要与苯酚初始浓度有关。当初始浓度〈350 mg/L时,在48 h内可完全降解,菌株降解过程中没有出现苯酚毒性抑制作用,遵循Monod方程;当初始浓度〉350 mg/L时,苯酚降解率及降解速率均有所下降,由于初始浓度高对菌体产生了抑制作用,降解过程以基质抑制型的Hal-dane方程为主。  相似文献   

10.
苯酚存在对生物强化系统降解2,4-二氯酚的影响   总被引:5,自引:1,他引:4  
研究了采用生物强化技术降解废水中2,4-二氯酚(简称2,4-DCP)时,不同浓度的苯酚存在对生物强化系统降解2,4-DCP的影响,并通过半连续流实验研究了苯酚长期存在下强化系统中2,4-DCP和苯酚生物降解速率的变化趋势.结果表明,苯酚浓度为10mg/L,50mg/L,100 mg/L及300mg/L时,都会对强化系统中2,4-DCP的降解速率产生一定的抑制作用,而且抑制作用随着苯酚浓度的增加而增强.不同浓度的苯酚与2,4-DCP长期共存时,2,4-DCP的降解速率表现出下降的趋势,而苯酚的降解速率则有所增强.  相似文献   

11.
苯系化合物在硝酸盐还原条件下的生物降解性能   总被引:5,自引:0,他引:5  
豆俊峰  刘翔 《环境科学》2006,27(9):1846-1852
运用驯化的反硝化混合菌群进行了苯系化合物(BTEX)的厌氧降解试验.结果表明,混合菌群能够在反硝化条件下有效降解苯、甲苯、乙苯、邻二甲苯、间二甲苯和对二甲苯.BTEX的降解规律符合底物抑制的Monod模型,当初始浓度小于50mg·L-1时,6种受试基质的厌氧降解速率顺序为:甲苯>乙苯>间二甲苯>邻二甲苯>对二甲苯>苯.整个试验过程中NO3-的消耗与苯、甲苯、乙苯、邻二甲苯、间二甲苯及对二甲苯生物降解之间的摩尔比分别为:9.47,9.26,1  相似文献   

12.
O3预处理耦合微生物降解修复PAHs污染土壤   总被引:1,自引:0,他引:1       下载免费PDF全文
通过室内批次试验,研究了O3预处理耦合微生物降解技术对北京某焦化厂PAHs(多环芳烃)污染土壤的修复效果. 结果表明:在ρ(O3)为0.79、1.74、4.50 mg/L时,5 min内土壤PAHs迅速降解,去除率分别为11.01%、32.48%、34.65%,但随着降解时间的延长,土壤中PAHs降解逐渐放缓,60 min后土壤PAHs去除率分别为39.58%、52.84%、53.79%,土壤微生物菌落数量由原土的3.07×108 CFU/g分别降至1.73×106、1.02×105、1.49×103 CFU/g. 经ρ(O3)为1.74 mg/L预处理5、10 min,添加LB培养基分别耦合1周微生物降解后,土壤PAHs去除率达68.93%、63.32%,相比单一微生物降解分别提高35.34%、24.33%. 经ρ(O3)为1.74 mg/L预处理5 min,同时添加皂角苷及LB培养基优化降解4周后,土壤PAHs去除率为93.26%,相比仅添加LB培养基优化培养4周提高了7.00%. 研究发现,O3预处理耦合微生物降解技术中ρ(O3)最佳值为1.74 mg/L、最佳预处理时间为5 min,并且O3预处理耦合微生物降解技术降解土壤中PAHs的效率优于单一O3化处理或微生物降解处理.   相似文献   

13.
铜绿假单胞菌对DBP的降解特性研究   总被引:2,自引:0,他引:2  
采用小容量全萃取方法,研究了1株铜绿假单胞菌对BDP的降解特性.结果表明,该菌株对DBP具有高效降解能力,当DBP浓度为400 mg/L,投菌量为2 g/L时,t1/2为3.60 d;其降解过程完全符合一级反应动力学.DBP作为该菌生长的唯一碳源时,其降解过程包括快速生物吸附、解析、降解等几个阶段.实验还确认了存在邻苯二甲酸单丁酯和邻苯二甲酸2种中间产物,从而验证了DBP在双加氧水解酶作用下2步水解变为邻苯二甲酸的历程.  相似文献   

14.
刘蛟  贾晓强  闻建平 《环境科学》2011,32(10):3053-3058
以恶臭假单胞菌和热带假丝酵母为对象,进行了苯酚、间甲酚和4-氯酚的生物降解实验,研究了2种菌的纯培养和混合培养方式下3种酚的降解特性和代谢机制.结果表明,当苯酚、间甲酚和4-氯酚的初始浓度分别为100、50和60 mg.L-1时,相对于纯培养,混合培养的动力学常数k的绝对值分别提高了19.0%、2.6%和46.4%.苯...  相似文献   

15.
气升式内循环蜂窝陶瓷反应器降解2,4-二氯酚的研究   总被引:8,自引:1,他引:7  
从以2,4-二氯酚(2,4-DCP)长期驯化的好氧活性污泥中分离出一株以2,4-DCP为唯一碳源的菌种,将这种菌固定在气升式内循环蜂窝陶瓷反应器内,研究了此反应器在半连续流运行时,对2,4-DCP单基质及其与苯酚共基质时对污染物的降解情况及降解动力学.结果表明,2,4-DCP单基质时,反应器对氯酚的去除效果随着实验次数的增加而加快;2,4-DCP与苯酚共基质时,苯酚的降解速率随着半连续流实验次数的增加而加快,而氯酚的降解速率则表现出下降的趋势.此外,还研究了此反应器在连续流运行时对2,4-DCP的降解,水  相似文献   

16.
有机污染物在大连近海海水中生物降解速度的研究   总被引:4,自引:0,他引:4  
研究了4种特征有机污染物在大连近海海水中生物降解的动力学,通过大天然海水中分别加入有机物苯,硝基苯,苯胺和苯酚,实验测定了它们在0.1mg/L,0.3mg/L,0.5mg/L及1mg/L等几组不同浓度下的BOD及其历时曲线,根据实验结果,经数据处理,得到同物的生物降解动力学参数K和L0,应用一级反应动力学表示的BOD数学模式Y=L0(1-10^kt)较好表达了BOD随时间的变化规律,计算结果与实测  相似文献   

17.
丁莹  袁兴中  曾光明  刘智峰  钟华  王静 《环境科学》2010,31(4):1047-1052
通过液态发酵培养法探讨了添加2种化学表面活性剂十六烷基三甲基溴化铵(CTAB)、曲拉通X-100(Triton X-100)以及生物表面活性剂二鼠李糖脂(dirhamnolipid,diRL)对1株热带假丝酵母(Candida tropicalis)降解苯酚的影响.结果表明,发酵液中苯酚的分解和菌体生长的不同步,反映了苯酚对该菌的毒性作用以及苯酚降解过程中中间产物的形成.CTAB对热带假丝酵母具有毒性作用,抑制菌体对苯酚的降解.低浓度(0.1、0.3CMC)的Triton X-100对C.tropicalis的生长及对苯酚的降解有一定的促进作用,分别将苯酚降解完全的时间由空白的48h提前至24h和36h;随着Triton X-100浓度增大(1.0、3.0CMC),降解初期菌体的衰亡减缓,但使菌体生长滞后,苯酚分解完全的时间延长.生物表面活性剂diRL促进菌体对苯酚降解的同时显著地促进了C.tropicalis的生长,且促进作用随着加入diRL浓度的增大而增强,1.0、3.0CMC的diRL将苯酚降解完全的时间都提前到24h;而diRL在发酵过程中浓度也逐渐降低,这表明diRL很大程度上减弱了苯酚对菌体的毒性,并且可以共同作为碳源促进菌体的生长.  相似文献   

18.
A pure culture using benzene as sole carbon and energy sources was isolated by screening procedure from gasoline contaminated soil. The analysis of the 16S rDNA gene sequence, morphological and physiological characteristics showed that the isolated strain was a member of genus Bacillus cereus. The biodegradation performance of benzene by B. cereus was evaluated, and the results showed that benzene could be e ciently biodegraded when the initial benzene concentration was below 150 mg/L. The metabolites of anaerobic nitrate-dependent benzene oxidation by strain B. cereus were identified as phenol and benzoate. The results of substrate interaction between binary combinations for benzene, phenol and benzoate showed that the simultaneous presence of benzene stimulated the degradation of benzoate, whereas the addition of benzene inhibited the degradation of phenol. Benzene degradation by B. cereus was enhanced by the addition of phenol and benzoate, the enhanced e ects were more pronounced at higher concentration. To our knowledge, this is the first report that the isolated bacterial culture of B. cereus can e ciently degraded benzene under nitrate reducing conditions.  相似文献   

19.
从污水处理厂活性污泥中分离筛选出一株高效苯酚降解菌L5-1,经菌落形态观察和16S rDNA基因测序,结果表明菌株L5-1为蜡样芽胞杆菌(Bacillus cereus),美国国家生物信息中心(NCBI)的注册号为MN784421.将苯酚设置为唯一碳源,对其生长和苯酚降解特性展开研究.结果表明:菌株L5-1在10%接种量、温度30~35℃、pH值7~8的条件下,均能高效降解培养基中苯酚(培养基体积为100mL,初始苯酚浓度为500mg/L,14h时降解率>93%).而在最优降解条件下(10%接种量,培养温度为35℃,pH值7.0,NaCl浓度为1%),初始苯酚浓度为500mg/L,菌株在14h内的苯酚降解率可达97.1%;而当初始苯酚浓度为1000mg/L,菌株也可在46h内达到97.71%的降解率.运用Haldance方程动力学模拟菌株在不同浓度苯酚下的生长过程,其最大比生长速率为0.355h-1,半饱合常数104.27mg/L,抑制常数为322.83mg/L,R2=0.997.菌株L5-1为目前已报道的Bacillus菌属中降解苯酚能力较强的菌株,为实际处理含酚废水中提供理论参考.  相似文献   

20.
A strain Pandoraea pnomenusa LX-1 that uses dichloromethane(DCM) as sole carbon and energy source has been isolated and identified in our laboratory. The optimum aerobic biodegradation of DCM in batch culture was evaluated by response surface methodology. Maximum biodegradation(5.35 mg/(L·hr)) was achieved under cultivation at 32.8°C, pH 7.3, and 0.66% NaCl. The growth and biodegradation processes were well fitted by Haldane's kinetic model, yielding maximum specific growth and degradation rates of 0.133 hr-1and 0.856 hr-1, respectively. The microorganism efficiently degraded a mixture of DCM and coexisting components(benzene, toluene and chlorobenzene). The carbon recovery(52.80%–94.59%) indicated that the targets were predominantly mineralized and incorporated into cell materials. Electron acceptors increased the DCM biodegradation rate in the following order: mixed oxygen iron sulfate nitrate. The highest dechlorination rate was 0.365 mg Cl-/(hr·mg biomass), obtained in the presence of mixed electron acceptors. Removal was achieved in a continuous biotrickling filter at 56%–85% efficiency, with a mineralization rate of 75.2%. Molecular biology techniques revealed the predominant strain as P. pnomenusa LX-1. These results clearly demonstrated the effectiveness of strain LX-1 in treating DCM-containing industrial effluents. As such, the strain is a strong candidate for remediation of DCM coexisting with other organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号