首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
于兴娜  马佳  朱彬  王红磊  严殊祺  夏航 《环境科学》2015,36(6):1919-1925
为了解南京北郊秋冬季相对湿度与气溶胶理化特性对大气能见度的影响,利用2012年秋冬季气象要素资料、颗粒物浓度及其主要成分和气溶胶粒子谱分布等观测数据,分析了南京北郊大气能见度与气象要素、颗粒物污染之间的关系.结果表明,南京北郊秋冬季节平均大气能见度仅为4.76 km.颗粒物浓度与能见度存在一定的负相关关系,尤其细粒子对能见度的影响更为显著.随细粒子质量浓度和相对湿度(RH)的增大,低能见度出现的频率呈现上升趋势.能见度从5~10 km衰减到5km时,PM10和PM2.1质量浓度分别增加了7.56%和37.64%;其中SO2-4和NO-3质量浓度均有显著增加.气溶胶粒子数浓度对能见度的影响与相对湿度有关,粒径0.5~2μm的气溶胶数浓度随RH增加增长缓慢,而2~10μm范围内的粒子数浓度随RH增加而减小;结合气溶胶表面积浓度与能见度进行相关性分析,表明0.5~2μm的细粒子及相对湿度是导致南京北郊秋冬季大气能见度下降的主要因素.  相似文献   

2.
亚青会期间南京地区气溶胶浓度变化及其与能见度的关系   总被引:5,自引:4,他引:1  
袁亮  银燕  李琦  肖辉  李力 《环境科学》2014,35(11):4052-4060
为保障2014年青奥会空气质量和制定控制措施提供科学支持,利用2013年8月南京市气溶胶的观测资料,结合气象要素,分析了南京地区气溶胶浓度变化特征,并深入研究了气溶胶质量浓度与相对湿度对能见度的影响.结果表明,观测期间PM10和PM2.5质量浓度平均值分别为67.44μg·m-3和31.92μg·m-3,0.1~10μm粒径范围内的气溶胶粒子数浓度和体积浓度的平均值分别为2466.25 cm-3和19.89μm3·cm-3;对数正态分布(log-normal)拟合平均谱分布得到两个模态的中值粒径分别为0.19μm和1.12μm;局地源强是影响南京气溶胶浓度的重要因子;PM10和PM2.5质量浓度日变化略有差异,PM10浓度日变化主要受交通和边界层活动影响,PM2.5浓度日变化则主要受交通排放和光化学反应生成的二次污染物的影响;对能见度的统计分析表明,能见度随PM2.5浓度和相对湿度的增加而降低,当相对湿度小于70%时,PM2.5浓度对能见度的影响较大,当相对湿度大于70%时,相对湿度对能见度的影响较大.  相似文献   

3.
海洋-大气过程对南海气溶胶数浓度谱分布的影响   总被引:1,自引:0,他引:1  
孔亚文  盛立芳  刘骞  李秀镇 《环境科学》2016,37(7):2443-2452
利用2012年8月28日至10月13日期间走航观测的气溶胶数据,分析了南海气溶胶数浓度时空分布和粒径谱分布特征,以及海洋-大气过程的影响.结果表明,南海气溶胶数浓度的时空分布和粒径谱分布受海洋和陆地源以及当地气象条件如风速、风向、相对湿度、云量、温度等的共同影响.陆地气团影响下的海域气溶胶数浓度较大,达2 300个·cm~(-3);受陆地影响较小的海域大气较为洁净,气溶胶数浓度在1 200个·cm~(-3)以下.观测得到的气溶胶粒径谱包括积聚模态和粗模态,峰值分别位于0.08~0.2μm和0.5~2μm附近.出现频率较高的谱型有3种:陆地型,海洋背景1型和海洋背景2型.陆地型与海洋2型的谱分布形状基本一致,但后者次微米粒子数浓度非常小,是洁净海洋背景下最常见的谱型;海洋1型在0.05~0.1μm粒径段数浓度显著高于海洋2型,并且在大于0.5μm的粗粒子段,海洋1型的气溶胶数浓度超过陆地型气溶胶数浓度,暗示了海洋源对这两个粒径段的粒子数浓度的贡献.0.05~0.12μm的积聚模态粒子数浓度与低云量有明显的正相关关系,且当相对湿度达90%~95%时,0.08μm附近的粒子数浓度增加显著.0.5~6μm的粗模态海洋气溶胶对风速的依赖性较强,相关性达0.7;0.05~0.12μm气溶胶数浓度与风速呈现弱正相关;0.12~0.5μm粒子数浓度与风速呈负相关.随着相对湿度的增大,0.08~0.12μm的粒子数浓度降低,而0.05~0.08μm和0.5~6μm的粒子数浓度增大.降水过程中,各粒径段粒子数浓度逐渐降低,但在降水初期,相对湿度达到90%~95%,0.05~0.12μm和0.5~6μm的粒子数浓度显著增大,随后逐渐减小.  相似文献   

4.
使用GRIMM180对2017年12月—2018年11月南通市区四季0. 25~32μm粒径段大气气溶胶数浓度进行连续观测,对其变化特征进行了分析。春、夏、秋、冬四季数浓度分别为396个/cm3、281个/cm3、265个/cm3、519个/cm3。春季PM1-32的气溶胶日变化呈单峰分布,峰值位于11∶00;夏季PM0. 25-1及PM2. 5-32的气溶胶日变化呈单峰分布,峰值位于12∶00,与太阳辐射有关;秋季PM0. 25-32和冬季PM0. 25-2. 5的气溶胶日变化呈双峰分布,峰值位于8∶00—10∶00和18∶00—19∶00,受早晚高峰影响。气溶胶四季数浓度谱峰值均为0. 29μm,数浓度主要由1μm以下的细粒子贡献,粗粒子贡献很少, 1μm的粒子数浓度维持在较低水平。随着小颗粒物数浓度的增加,空气质量状况的下降更为突出,尤其是0. 5~1μm的颗粒物。  相似文献   

5.
南京冬季雾霾过程中气溶胶粒子的微物理特征   总被引:26,自引:7,他引:19  
2007年冬季南京雾外场试验获得了雾霾转换过程的大气气溶胶和雾滴尺度谱分布同步观测资料,根据能见度和含水量将雾霾过程划分为雾、轻雾、湿霾、霾4个不同阶段,进而分析了不同阶段粗、细气溶胶粒子的微物理特征.结果表明,4个阶段的主要发生顺序为霾←→轻雾—→湿霾—→雾—→湿霾—→轻雾←→霾,雾前湿霾阶段持续时间长于雾后.尺度2μm的粗粒子数浓度、表面积浓度和体积浓度在雾阶段均显著大于其他3个阶段,其中霾阶段浓度最低.雾滴表面积浓度和体积浓度尺度谱分布为双峰或多峰型,而轻雾、湿霾和霾阶段粗粒子谱均为单峰型.尺度0.010μm的细粒子表面积浓度谱形在雾和湿霾阶段、轻雾和霾阶段分别相似,雾和湿霾阶段数浓度占优势的尺度范围分别为0.04~0.13μm和0.02~0.14μm,轻雾及霾阶段数浓度优势粒子尺度范围均为0.02~0.06μm.从霾、轻雾、湿霾到雾的转换过程中,以0.060~0.090μm为界,小粒子减少,大粒子增多.雾霾演变过程中气溶胶粒子数浓度与均方根直径呈显著负相关关系,雾阶段气溶胶粒子数浓度最低、平均尺度最大.  相似文献   

6.
为研究南京地区大气气溶胶粒子的微物理特征,于2008年8月~2008年9月在南京北郊和南京紫金山对照点进行了大气气溶胶观测,文章分析了气溶胶的浓度、谱分布、日变化特征以及降水对其数浓度的影响。结果表明:南京北郊大气气溶胶日平均数浓度约是紫金山的2.6倍,最大值数量级高达106,比紫金山高出2个量级;南京北郊气溶胶数浓度谱分布呈单峰分布,紫金山观测区呈双峰分布,峰值都集中在爱根核模态;气溶胶的表面积浓度分布集中在积聚模态,质量浓度则主要集中在积聚模态和粗粒子模态;气溶胶表现出明显的日变化,紫金山观测区上午达到全天最大值,南京北郊午后达到全天最大值,受人为活动影响较大;气溶胶的数浓度与降水强度呈负相关性,降水对粒径范围为0.02μm~0.1μm的气溶胶有很强的清除作用。  相似文献   

7.
使用宽范围粒径谱仪对天山白杨沟风景区2019年8月5-25日10 nm~10 μm气溶胶数浓度粒径分布进行观测,结合气象要素数据,分析了天山地区夏季气象条件对气溶胶粒径分布特征的影响.结果表明,夏季天山地区10 nm~10 μm气溶胶数浓度、表面积浓度和体积浓度平均为3539.2 cm-3、116.5 μm2·cm-3和17.6 μm3·cm-3.不同降水过程对气溶胶数浓度的影响不同.不同降水过程中气溶胶数浓度谱均为单峰型分布,持续时间长的小雨和毛毛雨对气溶胶数浓度谱谱形的影响较小,而降雨量较强的短时降水过程往往会使得气溶胶粒径谱峰值往大粒径段偏移.降雨过程气溶胶表面积浓度谱和体积浓度谱为多峰型分布,表面积浓度主要集中在30~500 nm的细粒子段,体积浓度主要集中在1~10 μm的粗粒子段.相对湿度(RH)对核模态气溶胶数浓度和积聚模态气溶胶数浓度的影响较大,对爱根核模态气溶胶数浓度的影响较小.不同相对湿度条件下气溶胶数浓度谱均为单峰型分布.随着相对湿度的增加,气溶胶数浓度谱的峰宽呈现先增加后减小的趋势,这种变化趋势在<40 nm时更加显著.气溶胶数浓度、表面积浓度和体积浓度随风速风向的分布与能见度随风速风向的分布呈现相反的趋势.  相似文献   

8.
泰山顶(1534 m)夏季气溶胶粒径分布特征   总被引:3,自引:1,他引:2  
使用宽范围粒径谱仪对泰山顶2017年6月1~25日10 nm~10μm气溶胶数浓度粒径分布进行观测,结合PM(PM_(2. 5)和PM10)以及气象要素数据,分析了泰山顶气溶胶粒径分布特征及其主要影响因素.结果表明,观测期间泰山PM_(2. 5)和PM10的平均浓度分别为20. 7μg·m~(-3)和82. 4μg·m~(-3),PM_(2. 5)/PM10仅为25. 1%.数浓度、表面积浓度和体积分数平均为8 672. 8cm~(-3)、408. 3μm2·cm~(-3)和24. 2μm3·cm~(-3).数浓度谱分布为单峰型分布,表面积浓度和体积分数谱分布均为三峰型分布.数浓度和表面积浓度的主导粒径分别为10~20 nm和100~500 nm,体积分数的主导粒径为100~500 nm和2. 5~10μm.风向对PM和数浓度的影响要比风速的影响大.随着RH的增加,气溶胶数浓度谱由双峰型分布转变为单峰型分布,表面积浓度谱由单峰型分布转变为三峰型分布.  相似文献   

9.
利用2011年10月17~22日连续在线观测沈阳地区大气能见度、颗粒物质量浓度ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)、以及通过太阳光度计测量数据反演得到的气溶胶光学厚度、Angstrom波长指数、气溶胶粒子谱分布数据,结合相对湿度、风速、温度等气象资料,分析了2011 年秋季沈阳一次雾霾天气过程中能见度与颗粒物质量浓度及气溶胶光学特征变化.结果表明:相对温度偏高、小风天气以及颗粒物质量浓度累积是造成沈阳能见度下降、引发雾霾天气的主要因素;雾霾期间细粒子所占比例较高,ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)平均值分别为138.8、103.3、94.9μg/m3,比雾霾过程前均增加约2倍左右,PM2.5/PM10和PM1.0/PM10分别为74.7%和68.6%;当RH0.90),RH >80%时, 能见度与颗粒物浓度间的相关性减弱;雾霾期间气溶胶光学厚度明显增加,雾霾前气溶胶光学厚度和Angstrom波长指数平均值分别为0.82和0.94,雾霾期间气溶胶光学厚度和Angstrom波长指数平均值分别为1.42和1.25;雾霾天气过程中,细模态粒子的峰值浓度约是雾霾前细粒子浓度的2倍,说明沈阳地区大气污染物以细粒子为主,进而影响气溶胶光学特征发生变化.  相似文献   

10.
于2013年1月连续在线观测天津城区气溶胶数浓度谱分布和大气能见度,并结合相关气象资料,探讨相对湿度(RH)对气溶胶浓度谱分布和大气能见度的影响.结果表明,观测期间发生了4次连续雾霾天气过程,4次雾霾天气过程对应着气溶胶粒子数浓度的连续高值,低能见度天气系高浓度气溶胶粒子和高相对湿度协同所致;随着RH增大,PN1和PN2.5-10呈增长趋势,RH90%后,PN1和PN2.5-10有所降低,PN1-2.5则持续增长,高RH对气粒转化和气溶胶粒子的碰并聚合作用明显;气溶胶吸湿增长因子计算表明,高RH下水汽对能见度影响很大,尤其是大雾天气下其影响甚至可能超过气溶胶粒子浓度对其的影响.  相似文献   

11.
南京冬季晴天及雾-霾天气纳米气溶胶粒子谱日变化比较   总被引:1,自引:0,他引:1  
利用2017年12月南京气溶胶数浓度与气象参数资料,比较研究晴天及雾-霾天中10~1000nm纳米气溶胶粒子谱日变化规律及差异特征.结果表明,单峰谱型出现与污染加重有明显关系,分别出现在晴天午后、霾严重污染阶段和污染消散阶段、浓雾过程,峰值粒径分别为晴天(20~100nm)、霾天(27~144nm)和雾天(34~122nm).3种天气条件下,晴天较强的太阳辐射和较低的湿度适合小粒子生成,核模态占比在晴天最高;霾天气象场适合爱根态粒子大量稳定存在,爱根态占比在霾天最高;雾天大量气溶胶吸湿增长,导致积聚态占比在雾天最高.在霾天污染物累积阶段,大量积聚态粒子对核模态、爱根态粒子的碰并增长作用抑制核模态、爱根态粒子生成,核模态和爱根态粒子浓度变化率为-91.0%和-62.5%,而积聚态为89.7%.浓雾过程对爱根态粒子清除作用最明显.  相似文献   

12.
于2013年1月连续在线观测天津城区气溶胶数浓度谱分布和大气能见度,并结合相关气象资料,探讨相对湿度(RH)对气溶胶浓度谱分布和大气能见度的影响.结果表明,观测期间发生了4次连续雾霾天气过程, 4次雾霾天气过程对应着气溶胶粒子数浓度的连续高值,低能见度天气系高浓度气溶胶粒子和高相对湿度协同所致;随着RH增大,PN1和PN2.5-10呈增长趋势, RH>90%后,PN1和PN2.5-10有所降低,PN1-2.5则持续增长,高RH对气粒转化和气溶胶粒子的碰并聚合作用明显;气溶胶吸湿增长因子计算表明,高RH下水汽对能见度影响很大,尤其是大雾天气下其影响甚至可能超过气溶胶粒子浓度对其的影响.  相似文献   

13.
余洋  杨军 《环境科学学报》2016,36(7):2305-2313
2007年南京冬季雾外场综合试验期间,雾、霾交替持续的最长时间达100 h以上。利用大气气溶胶粒子和雾滴数浓度尺度谱分布、能见度、相对湿度等同步观测资料,从Mie散射理论出发,研究了雾、霾不同阶段大气消光特征,重点分析了大气气溶胶粒子和雾滴在雾、霾持续和转化过程中的消光作用。结果表明,雾、霾过程不同阶段平均能见度的大小关系为:雾<湿霾<霾~轻雾。平均而言,雾阶段雾滴和气溶胶粒子的消光作用相当,其中,雾滴消光波动幅度大于气溶胶粒子消光,能见度的变化趋势主要由雾滴的消光决定。湿霾、霾和轻雾阶段的消光主要由气溶胶粒子造成。湿霾阶段的低能见度是由于大量积聚模态的气溶胶粒子在较高相对湿度环境中吸湿增长所致。霾阶段气溶胶粒子数浓度达到最大,核模态粒子占总数浓度的80%左右,是导致该阶段能见度较低的主要原因。轻雾阶段气溶胶粒子的消光系数最小,但雾滴可提供10%~15%的消光贡献,导致能见度与霾阶段相当。  相似文献   

14.
西安市两次雾霾期间气象要素和气溶胶特性分析   总被引:4,自引:0,他引:4  
利用气象要素和气溶胶观测资料,分析了西安市2013年12月17~25日、2014年2月20~26日两次雾霾过程的气象要素风、温、湿变化,气溶胶质量浓度、粒子谱分布及散射系数的变化及其在雾霾天气的形成、发展、维持与变化中的作用.结果表明:APS观测的粒子谱变化表明,雾霾过程中,粒径在0.5~0.835μm之间的粒子的数浓度增加最明显,雾霾后,3.5μm粒子的数浓度下降显著;SMPS观测的粒子谱变化表明,霾过程中细粒子的数浓度主要集中在30~300nm,且具有明显的日变化特征,08:00~14:00、18:00~02:00为数浓度的大值时段,细粒子段污染物浓度的增加主要是由粒径大于140nm以上的粒子引起的.散射系数的增加与粒径小于1.0mm粒子的数浓度增加有关,也是雾霾期间能见度恶化的重要原因之一.  相似文献   

15.
天津冬季雾霾天气下颗粒物质量浓度分布与光学特性   总被引:1,自引:0,他引:1  
年1—2月连续在线观测天津ρ(PM2.5)、ρ(PM10)、大气能见度、σsp(气溶胶散射系数)、σap(气溶胶吸收系数)和AOD(大气光学厚度),结合气象资料,分析天津城区雾霾天气下的颗粒物质量浓度分布与光学特性. 结果表明:在为期52d的观测期间,发生雾日8d、轻雾日1d、霾日29d,雾霾日占观测时长的73%;霾日ρ(PM2.5)/ρ(PM10)为0.65,SSA(单次散射反照率)为0.95,MSE(气溶胶质量散射系数)为3.30m2/g,均高于非雾霾日,表明雾霾日下细粒子的散射作用是大气消光的主要贡献者;雾霾日的σsp和σap均高于非雾霾日,随着霾等级增强,σsp和σap逐渐增大,重度霾天气的σsp和σap与中度霾天气相当,分析高RH可能是造成能见度进一步降低的主要因素;雾霾天气下AOD500nm和波长指数均显著高于非雾霾天气,表明雾霾天气下气溶胶浓度远高于非雾霾天气,并且细粒子占主导地位.   相似文献   

16.
为探讨西安市典型霾过程中的气溶胶垂直分布特征和气象要素影响,利用地面空气质量数据、CALIPSO卫星激光雷达资料以及气象要素资料,并结合HYSPLIT后向轨迹模式、天气形势分析、相关性分析等,对西安市2016年12月17-21日霾过程依据RH(相对湿度)进行干霾、湿霾和雾霾的划分,并分析不同阶段的气溶胶垂直分布特征.结果表明:前期干霾阶段,西北沙尘的输送使得高空气溶胶退偏比和色比较大,以沙尘型气溶胶为主;中期湿霾阶段,RH的增大使得低层细粒子增多,消光系数达1.7 km-1,以污染型气溶胶为主;后期干霾阶段时,低层大气中非球形粗粒子增多,以混合型气溶胶占主导.气象要素对霾过程影响较大,静风、高湿、"双逆温"效应不利于颗粒物的清除,逆温强度的变化与污染物的消长具有一定的滞后一致性.RH和ρ(PM)共同影响能见度变化,RH高于80%时,能见度由RH主导,相关系数达到-0.871;RH低于80%的污染阶段,ρ(PM)对能见度起主导作用,相关系数达0.85以上.研究显示,不同霾阶段气溶胶垂直分布特征差异较大,气象要素对霾过程的消长有重要影响.   相似文献   

17.
不同气象条件下的气溶胶时空分布特征   总被引:4,自引:0,他引:4  
利用2012年3月20—24日的激光雷达回波数据和粒子计数器采样的气溶胶数浓度数据,分析了测点近地面及其上空的气溶胶垂直消光系数、数浓度等时空分布特征,研究了风向、风速、RH(相对湿度)对近地面气溶胶分布的影响. 结果表明:①阴霾天气气溶胶垂直消光系数在0.01~1.0之间,边界层高度在1km以下,到达边界层顶时消光系数产生突变;晴天气溶胶垂直消光系数在0.01~0.2之间,边界层高度在1.5~2.5km. ②阴霾天和晴天中近地面气溶胶数浓度变化规律一致,上午08:00左右开始增加,随温度升高呈下降态势,在傍晚达最小值后又略微增长并产生次高峰,夜间继续呈下降趋势. ③风向为东北偏东风时大气气溶胶的数浓度较大;风速增大,有利于气溶胶垂直输送和扩散,导致气溶胶数浓度减小. ④气-粒转化过程中,RH增大有利于气溶胶粒子由爱根核向积聚模态凝结. ⑤RH较小时,其与气溶胶数浓度呈正相关,而当RH增至74%时二者呈负相关.   相似文献   

18.
广州城区大气细颗粒物粒谱分布特征分析   总被引:8,自引:0,他引:8       下载免费PDF全文
2008年10~11月,利用大气细粒子谱分析仪(FPM-I型)对广州城区5nm~10μm大气细粒子谱进行长期连续在线测量.同时,利用大气能见度仪、黑碳分析仪、气象参数仪获取了观测点的大气能见度、黑碳质量浓度和气象参数信息. 颗粒物谱型分析结果表明:整个观测期内,颗粒物数浓度谱、表面积谱及体积谱均呈双峰结构. 广州地区核模态(5~20nm)、爱根核模态(20~100nm)和积聚模态(0.1~1μm)粒子日平均浓度变化范围分别为1400~4300个/cm3、5000~12300个/cm3和1600~2600个/cm3.晴天和灰霾天气下颗粒物数浓度、黑碳浓度及大气能见度对比分析结果表明:广州地区大气能见度的高低受核模态和爱根核模态粒子浓度的影响较小,与积聚模态粒子浓度呈负相关关系;黑碳质量浓度峰值的出现位置与爱根核模态粒子浓度峰值位置相一致,表明爱根核模态粒子对黑碳浓度的贡献不能忽略.  相似文献   

19.
杭州灰霾天气超细颗粒浓度分布特征   总被引:11,自引:7,他引:4  
陈秋方  孙在  谢小芳 《环境科学》2014,35(8):2851-2856
利用快速迁移率粒径谱仪(FMPS)对杭州2013年12月6~11日连续灰霾天气和灰霾消退过程超细颗粒进行监测,分析颗粒物浓度变化和粒径谱分布特征及其与气象的相关性.结果表明,颗粒物日变化特征为夜晚数浓度较高,凌晨数浓度开始降低,08:00和18:00上下班高峰期出现一个小峰值,体现出明显的交通源峰值,表明交通排放对大气污染影响较大.灰霾天气下颗粒物最高数浓度达到8.0×104cm-3.粒径谱呈双峰分布,峰值粒径分别为15 nm和100 nm,粒径在100 nm附近的粒子占大多数,粒子以爱根核模态和积聚模态为主,平均数量中位径CMD(count medium diameter)为85.89 nm.而在灰霾消退过程,颗粒物数浓度降低,峰值粒径向小粒径演变,粒径在100 nm附近的粒子逐渐减少,核模态粒子增多,大于积聚模态,平均CMD为58.64 nm.气象因素中能见度和风力与数浓度主要呈负相关,相关系数R分别为-0.225和-0.229,相对湿度与数浓度正相关,相关系数R为0.271,冬季大气比较稳定,水平温度与数浓度的相关性较小.研究灰霾天气数浓度分布和气象因素的综合影响对其形成机制及控制有重要意义.  相似文献   

20.
2009年秋季利用河北省人工影响天气办公室机载气溶胶粒子探头(PCASP-100X)和前向散射滴谱探头(FSSP-100-ER)在石家庄市上空进行了多次气溶胶观测.选取2009年9~10月间的7架次雾天、1架次小雨天及1架次密卷云天观测资料,重点研究雾天气溶胶粒子数浓度和直径的垂直、水平分布特征及粒子谱分布,并与密卷云天和小雨天的探测资料进行对比分析.结果表明:石家庄地区气溶胶粒子数浓度较高,近地面最大值达11910个/cm3.气溶胶粒子数浓度主要受天气条件影响,逆温层是影响粒子垂直输送的主要因素,在逆温层下粒子累积形成粒子数浓度的高值区,逆温层以上气溶胶粒子数浓度迅速减少,雾天和密卷云天粒子数浓度随高度多呈负指数分布;雾天多伴有逆温层和较大空气湿度,有利于气溶胶粒子累积,数浓度一般可达104个/cm3以上,容易形成低能见度污染天气;气溶胶粒子数浓度在无降水日有累积效应,降雨对气溶胶粒子有明显清除作用;粒子数浓度和粒子直径在水平方向上呈不均匀分布,随着高度增加粒子数浓度和直径的水平绝对偏差减小,相对偏差往往增大;不同天气下尺度谱型类似,多呈单峰分布,在0.11μm左右处出现峰值,但在雾天、密卷云天、小雨天气下的气溶胶粒子峰值依次变小,并且随高度增加,尺度谱峰值数密度值降低,谱变窄.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号