首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
我国水泥工业大气污染物排放量估算   总被引:10,自引:2,他引:8  
水泥工业是粉尘,SO2和NOx等多种大气污染物的重要排放源.根据各地水泥工业的工艺现状、活动水平、除尘器的除尘效率和污染物排放因子,估算了1995—2005年我国水泥工业生产过程中排放的粉尘,PM10,PM2.5,SO2,NOx,氟化物和CO等的排放量,并给出了2005年分省区、分工艺的排放清单.结果表明,污染物排放量与水泥活动水平呈正相关.1995年以来,随着水泥产量增加,污染物排放量增长迅速,2005年我国水泥工业排放排放粉尘520.69×104 t,PM10437.24×104 t,PM2.5301.06×104 t,SO2 86.09×104 t,NOx286.67×104 t,氟化物57.72×104t,CO1 987.97×104 t;山东、浙江、江苏、河北和广东等水泥生产大省污染物排放量较大,污染物排放总量占全国总排放量的46.6%,新型干法的推广应用有助于大气污染物的减排.   相似文献   

2.
采用IPCC温室气体排放清单中CO2排放因子与估算方法,核算了1995—2012年中国30个省区(不含港澳台地区和西藏自治区数据,全文同)服务业的CO2排放量,并对30个省区服务业人均CO2排放量的时空特征进行分析;利用基于面板数据的EKC模型检验中国及其三大经济带服务业增长与CO2排放之间的关系. 结果表明:在考察期内,中国服务业人均CO2排放量从0.16 t升至0.77 t,服务业人均增加值从1 621.04元增至9 991.95元;服务业人均CO2排放量排在前列的省区大都位于东部地区;东部和中部地区人均CO2排放量与服务业人均增加值之间呈线性正相关,人均服务业增加值每增加1个单位,人均CO2排放量将分别增加1.02和1.16个单位;西部地区人均CO2排放量与服务业人均增加值之间呈单调递增关系. 在此基础上,提出差别化的碳减排对策:①东部地区应通过技术改进和优化产业结构、能源消费结构来降低CO2排放,并成为中国服务业节能减排的“领头羊”;②中、西部地区应在保持服务业经济适当增速的前提下,将提高能源利用效率和降低能源强度作为减排重点.   相似文献   

3.
探讨区域CO2排放的长期变化趋势对制订碳减排政策和实现减排目标具有重要意义,为此,根据IPCC指南,测算了2000—2012年我国中部六省(安徽省、山西省、河南省、湖北省、湖南省和江西省)的CO2排放量及其排放强度;借助DEA(data envelopment analysis)-Malmquist指数模型,从CO2排放量、生产总值、资本存量、能源消费总量和劳动力5个方面,对中部六省的动态CO2排放效率进行了全要素分析.结果表明:①中部六省的CO2排放总量由2000年的6.74×108 t升至2012年的20.24×108 t,年均增长1.12×108 t.②中部六省CO2排放强度由2000年的3.41降至2012年的1.74,年均下降5.5%.受地区能源产业结构的影响,山西省CO2排放强度峰值高达11.40,减排压力与其余五省相比更为艰巨.③动态CO2排放效率均值为1.054,呈稳步提升趋势,技术效率进步指数年均值为1.051(>1),对CO2排放效率提升起到了拉动作用,而技术效率变动指数和规模效率指数的年均值均为0.999(<1),拉低了中部六省的CO2排放效率.研究显示,中部六省CO2排放量增速虽呈逐年下降趋势,但增长态势在短期内仍无法改变.CO2排放与地区所处经济发展阶段关系密切,其排放效率的提升主要依靠技术水平的进步、低碳管理方法的推广和规模经济的发展.   相似文献   

4.
CH4和CO2是大气中主要的温室气体,研究我国城市生活垃圾处理过程中二者的排放情况,对制订温室气体减排政策和应对气候变化有着至关重要的意义. 利用IPCC(政府间气候变化专门委员会)提供的废弃物处理排放CH4和CO2的计算方法,对1979—2011年我国城市生活垃圾处理CH4和CO2排放量(不含港澳台数据)进行统计分析. 结果表明:①2011年我国城市生活垃圾人均清运量为0.46 t,比2000年增加了53.3%. ②1979—2011年,我国城市生活垃圾处理仍以填埋为主,焚烧和堆肥处理方式相对较少,但近年来焚烧处理量呈逐年增加趋势,其中2011年焚烧处理量是2001年的16.8倍. ③我国城市生活垃圾处理产生的CH4和CO2排放量均呈逐年增长趋势,至2011年,二者分别达到7 024.03×104 (以CO2当量计,下同)和706.22×104 t;其中,2011年CH4排放量是1990年的20.0倍,CO2排放量是2001年的16.8倍. ④城市生活垃圾产生的温室气体排放具有明显的地域特性,其中华东地区CH4和CO2排放总量高达2 570.98×104 t;西北地区最小,仅为482.3×104 t. 该差异与城市发展规模、人们生活习惯和城市化进程等影响因子紧密相关.   相似文献   

5.
我国碳排放增长的驱动因素及贡献度分析   总被引:1,自引:0,他引:1  
郝珍珍  李健 《自然资源学报》2013,28(10):1664-1673
结合我国实际,对Kaya 等式进行扩展,引入经济效应影响因子、能源强度影响因子、行业贡献影响因子和碳排放强度影响因子,构建了行业CO2排放增长驱动力模型。论文应用该模型测算和分析了1990 年至2010 年我国6 个经济部门CO2排放的驱动因素。结果显示:①1990—2010 年,影响我国各行业CO2排放的正向驱动因素主要是经济效应,负向驱动因素主要是能源强度效应和碳排放强度效应;②碳减排政策的制定要权衡经济发展和碳减排的政策协同;③1997—2000 年和2005—2010 年CO2排放量减少或增速减缓的主要驱动力是能源强度效应和行业贡献效应;④基于国情,产业结构调整在短时间内对CO2减排效力不大,而是一个长期的减排战略。  相似文献   

6.
上海市居民出行方式与城市交通CO2排放及减排对策   总被引:10,自引:1,他引:9  
以上海市居民出行方式为研究对象,利用联合国政府间气候变化专门委员会(IPCC)温室气体排放计算指南中关于交通能源消费碳排放量的计算方法,探讨2002—2006年上海市居民出行选择的不同交通方式对CO2排放的影响和规律,并提供应对策略.结果表明,2002年以来上海市因居民出行导致的交通CO2排放总量呈显著增长趋势.私家车的CO2排放量增加速度最快,截至2006年私家车CO2排放量约相当于出租车、轨道交通和公交车3种公共交通方式之和.公共交通中,出租车的CO2年排放量和人均CO2排放量都最大,轨道交通的CO2年排放量和人均CO2排放量最小.公交车和出租车的CO2排放量所占比例减少,轨道交通的CO2排放量所占比例增加,这种排放结构的变化有利于减少CO2排放总量.CO2减排的具体措施包括限制私家车数量,设计合理的道路交通方案,使汽车尽可能接近其经济车速,改变汽车燃料种类等,其中限制私家车数量最为关键.   相似文献   

7.
潘思羽  张美玲 《环境工程》2023,(7):61-68+85
基于排放因子法估算2000—2020年甘肃省三大产业及生活能源消费直接CO2排放量,描述分析其时序演变特征。建立BP神经网络模型并预测2021—2030年甘肃省CO2排放量。构建甘肃省CO2排放影响因素的STIRPAT拓展模型,利用多元回归分析定量探究了各因素对CO2排放量的影响程度和内在作用机理,并结合随机森林进一步识别重要影响因素。结果表明:甘肃省产业及生活能源消耗直接CO2排放总体呈波动增长趋势,且第二产业占比在70%以上,是主要的CO2排放源;BP神经网络模型的预测误差为2×10-4,相关系数>0.99,对于预测甘肃省CO2排放具有较高精度,并得出2026年的甘肃省能源消耗直接CO2排放量达到最大;甘肃省CO2排放的驱动因素作用差异显著,CO2排放强度、经济发展、城乡消费对CO2排放的正向作用较大,城镇居民人均消...  相似文献   

8.
2010年中国机动车CH4和N2O排放清单   总被引:5,自引:0,他引:5  
中国大部分机动车温室气体排放研究都集中于CO2排放,对于CH4和N2O等排放的研究鲜见. 以中国机动车污染防治年报(2011年)、中国汽车工业年鉴(2011年)、中国统计年鉴(2011年)以及交通运输部发布的相关信息和数据(2011年)等为基础,结合文献调研和2008─2010年对北京、广州等国内10余座典型城市的实地调查结果,获得2010年我国机动车活动水平及排放特征. 基于上述基础信息,解析得到按不同车型、燃料和车龄分布的机动车保有量、年均行驶里程及排放因子,建立2010年中国机动车CH4和N2O排放清单. 结果表明:2010年中国机动车CH4和N2O排放量分别为23.90×104和6.01×104t,折算成CO2分别为501.99×104和1862.51×104t. 不确定性分析则显示,中国CH4排放量在18.21×104~27.52×104t之间,N2O排放量在4.32×104~7.62×104t之间. 在机动车中,汽车CH4和N2O排放量最大,分担率(某车型污染物排放量占机动车排放总量的比例)分别为77.99%和94.22%,而摩托车和农用车排放分担率较小. 在各类汽车中,CH4排放主要来源于轻型汽油车和天然气出租车,二者的排放分担率分别为47.98%和23.42%;N2O排放则主要源于轻型汽油车,其分担率为73.09%. 因此,轻型汽油车是削减机动车CH4和N2O排放的重点车型,同时天然气出租车也应作为控制CH4排放的主要车型.   相似文献   

9.
我国燃煤电厂颗粒物排放特征   总被引:1,自引:0,他引:1       下载免费PDF全文
基于我国燃煤电厂(不含港、澳、台数据,下同)的燃烧技术及颗粒物控制技术分类,建立了燃煤电厂颗粒物排放计算方法. 利用该方法,分析了2000─2010年我国燃煤电厂颗粒物排放量及分布特征. 结果表明:我国燃煤电厂颗粒物排放量自2000年起持续增加,于2005年达到最高值(375×104 t),其中PM10、PM2.5排放量分别为237×104、129×104 t;此后逐年降低,2010年降至166×104 t,其中PM10、PM2.5排放量分别降至126×104、85×104 t. 随着静电除尘及湿法脱硫的普及,颗粒物中PM2.5所占比例由2005年的34.3%升至2010年的51.2%. 我国燃煤电厂颗粒物排放地区分布不均衡,2010年内蒙古、山东、河南、江苏、山西和广东六省区的排放量占全国排放总量的44%. PM2.5排放因子也因各省燃煤电厂颗粒物排放控制技术不同而产生差异,其中煤粉炉、循环流化床锅炉的PM2.5排放因子分别为0.35~0.75、0.27~0.90 kg/t. 从机组规模影响来看,单台容量在30×104 kW以下的燃煤机组是粗颗粒(PM>10)的主要来源,而在30×104 kW以上的燃煤机组对PM2.5排放贡献(64.6%)较大,这主要与这类燃煤机组静电除尘和湿法脱硫的安装比例高有关.   相似文献   

10.
中国钢铁行业二氧化碳排放达峰路径研究   总被引:2,自引:2,他引:0       下载免费PDF全文
钢铁行业是我国重要的CO2排放源. 作为典型的资源能源密集型产业,钢铁行业加快绿色低碳转型、尽早实现碳达峰并有效降碳,既是行业自身高质量发展的内在需要,也是支撑落实国家碳达峰、碳中和目标的客观要求. 本文综合考虑经济社会发展、资源能源利用、工艺结构调整、低碳技术应用等因素影响,开展了基于情景分析的钢铁行业CO2排放达峰路径研究,对不同情景下钢铁行业CO2的排放趋势进行测算,识别钢铁行业CO2减排的主要驱动因素,判断推动钢铁行业碳排放达峰的关键举措,为制定“双碳”目标背景下钢铁行业CO2排放控制策略提供参考. 测算结果表明,我国钢铁行业CO2总排放量有望在2020—2024年期间达到峰值;行业CO2总排放量峰值为18.1×108~18.5×108 t,达峰后到2030年降幅将超过3×108 t. 研究显示,粗钢产量是决定我国钢铁行业碳排放能否快速达峰的关键,加大废钢资源利用、推进外购电力清洁化以及提高系统能效水平是2030年前钢铁行业实现碳排放达峰并有效降碳的重要途径. 到2030年,粗钢产量降低、加大废钢资源利用、推进外购电力清洁化、提高系统能效水平以及氢能炼钢和二氧化碳捕集、利用与封存(CCUS)等前沿技术对钢铁行业CO2减排的贡献率分别为11%~52%、34%~52%、7%~20%、5%~13%和2%~3%.   相似文献   

11.
苏昕  贺克斌  张强 《环境科学研究》2013,26(9):1022-1028
随着中国能源消耗和国际贸易的快速增长,中国国际贸易尤其是中美贸易对气候变化的影响受到了广泛关注,但国际贸易对于大气污染的影响却鲜见系统研究. 基于环境投入产出法和结构分解分析法,采用基于技术的、自下而上的大气污染物排放清单,探讨了中美贸易隐含的大气污染物排放问题. 结果表明:由于中国对美国出口贸易顺差较大且商品污染物排放强度较高,造成了中国对美国的出口贸易隐含着较大的污染物排放逆差. 2007年中国对美国出口贸易隐含的SO2、NOx和PM2.5的排放逆差分别为174.26×104、131.15×104和46.88×104t. 有行业针对性的污染物减排措施可以降低中美贸易隐含的污染物排放量;1997—2007年污染物燃烧排放因子和非燃烧直接排放强度的下降就可使出口贸易隐含的SO2和PM2.5排放量降低96.41%和226.26%. 占出口份额最高的机械类制造品的SO2、NOx和PM2.5排放强度分别为72.63、58.38和20.74t/108元,低于所有出口商品的污染物排放强度的平均值, 中国应加强这种高附加值、低污染物排放的商品出口.   相似文献   

12.
城市CO2排放是全球大气CO2的重要来源. 为探讨不同气象背景条件、土地利用方式和覆盖类型以及能源消耗方式对城市CO2排放的影响,利用北京325m气象塔(39°58′N、116°22′E)上140m高涡动相关仪监测的湍流数据,对2009年6月26日—2011年12月31日气象塔周边区域共919d CO2通量的时间变化及方向分布特征进行了研究,并计算了CO2的年排放量. 结果表明:CO2通量受交通因素影响明显,各季节CO2通量日间早、晚峰值出现时间与车流量高峰时间一致,该特征在冬季表现尤为突出. 冬季取暖会显著增加CO2排放量;受供暖排放和植物休眠的影响,冬季CO2通量全天均高于其他季节,日均值为30.1μmol/(m2·s),显著高于春、夏、秋三季的15.2、17.9和15.8μmol/(m2·s) (t-test,P<0.001). CO2通量在不同方向的分布特征表明,其值与源区内人工建筑面积所占比例成正比;而在植被覆盖比例较高的方位,其CO2通量相应较小. 气象塔周边区域CO2年均排放量达到30.0kg/(m2·a),但仍小于伦敦的35.5kg/(m2·a).   相似文献   

13.
张旺  谢世雄 《自然资源学报》2013,28(11):1846-1857
通过构建一个扩展的竞争型经济-能源-碳排放投入产出表,运用三层嵌套结构式I-O SDA 技术,从整体情况、分产业、工业分行业3 个层面,对1997—2007 年北京的碳排放增量进行了分解。结果表明:消费、投资、调出和出口等经济规模增长要素,以272.46%的贡献率成为增排的主要因素,而能源消费强度变动效应,则以-237.13%的贡献率成为减排的决定性因素;在规模扩张各效应中,调出和消费超过投资和出口达8 403.38×104 t,是增排的主要贡献者;2002—2007 年间以“高碳”为特征的新一轮工业化,使该期增排占到1997—2007年总增量的86.41%;服务业的贡献率是75.93%,为增排的第一大部门,但2002—2007 年工业超出服务业1 036.40×104 t;重制造业的贡献率是1 030.76%,为增排的重点行业,而能源工业则以-992.81%的贡献率,成为减排的重点行业;各时段各效应在不同产业、工业不同行业发挥的作用大小不同且不够稳定。  相似文献   

14.
水泥行业是主要的CO2排放行业,2020年我国水泥行业CO2排放占全国排放总量的12%,占全国工业过程排放的60%以上. 为开展水泥行业碳达峰路径研究,提出了基于社会、经济等影响因素的多因素拟合分析模型以及基于主要下游产业的需求预测方法,对2021—2035年我国水泥熟料及水泥产量进行预测;并通过对水泥行业碳排放特征的分析,考虑主要控制措施的可行性,构建我国水泥行业CO2排放情景,对2021—2035年水泥行业CO2排放趋势进行测算,在此基础上分析水泥行业碳达峰路径及相关政策建议. 结果表明:①中国水泥熟料消费量在“十四五”期间仍有一定上升空间,随着经济社会的绿色转型,水泥市场需求在“十五五”时期下降. ②在此基础上,通过全面加强产能控制、加大落后产能淘汰力度、推广高效节能技术、积极推进原燃料替代,可推动水泥行业碳排放于“十四五”中期达峰,峰值为13.8×108~14.2×108 t,经过2~3年的峰值平台期后呈持续下降趋势,2030年水泥行业碳排放量将较2020年下降15%~18%. ③2030年,水泥熟料及水泥产量的下降将带动水泥行业碳排放量较2020年减少1.4×108 t. 在各项技术措施中,节能改造是CO2减排潜力最大的措施,2030年能效提升可带动水泥行业CO2排放量较2020年减少0.38×108 t;其次是利用固体废物替代燃煤,可带动行业CO2排放量较2020年减少0.17×108 t. 研究显示,推动我国水泥行业碳达峰及碳减排,需在加强产量控制避免水泥过度消费的基础上,聚焦节能改造和原燃料替代措施.   相似文献   

15.
集中供热是事关国计民生的刚性需求,是能源消费的重要部门,是大气污染物减排的重要着力点.开展面向减污降碳的集中供热结构调整路径分析对我国实现“双碳”目标、建设“美丽中国”具有重要意义.通过构建2020年集中供热碳污耦合排放清单,摸清碳污排放现状;考虑热电联产供热范围以及生物质资源分布,分析拆炉并网、煤改气以及煤改生物质等措施的局限性及碳污减排潜力;结合情景分析,识别碳污减排关键路径,为开展集中供热减污降碳相关工作提供参考.结果表明:(1)热电联产、燃煤工业锅炉分别是集中供热部门CO2和大气污染物的主要排放源,东北地区及内蒙古自治区是该部门碳污排放的热点区域.燃煤工业锅炉污染控制水平及热效率较低是开展集中供热部门减污降碳的重要切入点.(2)热电联产供热管网难以全面覆盖35 t/h以下燃煤工业锅炉,超40%的小容量燃煤工业锅炉需要采用其他方式进行综合改造.(3)生物质能源利用潜力空间差异较大,制约了供热部门低碳化,如华北及东北地区难以满足本区域燃煤工业锅炉生物质改造的能源需求.(4)加强低碳情景下,2060年集中供热部门SO2、NOx  相似文献   

16.
选取IPCC碳排放核算方法并基于能源统计数据,核算了我国大陆30个省市的能源消耗碳排放量,利用纠正后的DMSP/OLS夜间灯光数据与相应空间单元的碳排放量进行回归分析,反演出1km×1km栅格的电力消耗碳排放量并分析其在地级市尺度上的时空变化.核算出2005年、2010年和2013年能源消耗排放总量分别为57.02,82.28和93.26亿t,其中电力碳排放量分别为23.03,35.62和42.07亿t.结果表明:校正后的DMSP/OLS夜间灯光数据能更好地估算碳排放,其DN总值与统计的省级能源消耗排放量、电力消耗排放量均存在较强的相关关系;整体而言,发达地区能源消耗排放量大但强度比较低.  相似文献   

17.
基于生产和消费视角的辽宁省行业能源消费碳排放   总被引:2,自引:1,他引:1  
行业能源消费碳排放核算是碳减排政策制订的基础,从消费视角进行行业碳排放研究日趋重要. 基于经济投入产出生命周期评价模型,从生产和消费视角解析了辽宁省2007年行业能源消费碳排放分布规律. 结果表明:生产视角碳排放量行业集中度高,该视角碳排放总量的78.73%集中在电力、热力的生产和供应业,金属冶炼及压延加工业,非金属矿物制品业以及交通运输、仓储及邮政业;为其他行业提供产品和服务是造成行业生产端碳排放的主要原因;消费视角下行业碳排放总量的53.79%集中在金属冶炼及压延加工业,建筑业,电力、热力的生产和供应业以及其他行业;上游供应行业的间接碳排放是造成消费端排放的主体.从碳排放强度来看,生产视角下各行业碳排放强度差异性较大,电力、热力的生产和供应业的碳排放强度最大,为9.17 t/万元;消费视角下行业之间的碳排放强度差异性较小,均低于3 t/万元. 最后针对不同视角下分析结果的差异性提出了相应对策的侧重点.   相似文献   

18.
中国道路交通二氧化碳排放达峰路径研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究我国道路交通行业CO2排放未来控制路径,结合未来经济社会和货物运输发展状况、运输结构、能源结构和能效结构变化,采用行驶里程法分析了我国道路交通CO2排放现状、未来变化趋势及主要驱动因素. 结果表明:①采用行驶里程法计算道路交通行业CO2排放量相对合理,2019年全国汽车CO2排放量为9.52×108 t,比油耗法所得结果高20%左右,二者存在差异的主要原因为交通油耗统计数据偏低. ②从车型看,重型货车和小型客车是汽车CO2排放的主要来源,分别占39.7%、38.2%;从燃料种类看,汽油、柴油、其他燃料(天然气、醇类燃料等)CO2排放量分别占42.8%、52.5%、4.7%. ③道路交通CO2排放预计于“十五五”末达峰,峰值在12.2×108~13.9×108 t之间,达峰后有2~3年的平台期. ④推广新能源车是道路交通CO2排放控制的主要驱动因素,其次为能效提升,运输结构调整在前期有一定的贡献,2025年上述措施对道路交通CO2减排量占比分别为56%、34%和10%左右,2030年分别为55%、40%和5%左右. 研究显示,加大新能源汽车推广力度,持续降低新生产燃油车碳排放强度,推进运输结构调整,可有效降低道路交通CO2排放.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号