首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用响应曲面法优化了KOH改性污泥生物炭(SB-KOH)的制备条件,研究了各因素之间对生物炭吸附性能的交互影响,并且探讨了KOH强化生物炭吸附能力的机制.同时,研究了吸附时间、吸附温度及pH对SB-KOH吸附Pb(Ⅱ)的影响,探讨其吸附机理.结果表明:KOH浸渍浓度是最显著因素,较高浸渍浓度有利于提高SB-KOH的吸附性能;增加KOH浸渍浓度和升高热解温度可以协同提高SB-KOH的吸附性能;最佳制备条件为2.5 mol·L-1的KOH浸渍浓度、7 h的浸渍时间、631 ℃的热解温度和44 min的热解时间.KOH改性后的污泥生物炭表面粗糙, 比表面积增大,微孔数量增加,SB-KOH的比表面积为141.22 m2·g-1,是原污泥生物炭(SB,5.93 m2·g-1)的24倍,改性后的生物炭碱性提高、K元素含量增加.SB-KOH吸附Pb(Ⅱ)是以化学吸附为主的多分子层混合吸附,膜扩散是主要的速率控制步骤,增加溶液pH、提高温度可促进吸附.吸附机制涉及矿物沉淀(Qmp)、离子交换(Qie)、含氧官能团的络合(Qoc)和金属π键结合(Q),不同吸附机理的贡献顺序为:Qmp(143.5 mg·g-1)>Qie(39.67 mg·g-1)>Qoc(8.56 mg·g-1)>Q(1.65 mg·g-1),KOH改性强化了生物炭对Pb(Ⅱ)的矿物沉淀和离子交换吸附量.本研究丰富了KOH改性污泥生物炭的制备理论,阐明了SB-KOH吸附Pb(Ⅱ)吸附机理及其影响的主要机制.  相似文献   

2.
改性污泥基生物炭的性质与重金属吸附效果   总被引:8,自引:4,他引:4  
为提高污泥基生物炭在高钙溶液体系中对重金属阳离子的吸附能力,将Fe2O3、MnO2、ZnO与市政污泥以质量比1 ∶10(以过渡金属元素质量计)混合共热解,制备改性生物炭;表征改性生物炭的组成、官能团分布和表面性质,考察其对典型重金属阳离子Cd2+的吸附效果.过渡金属氧化物可促进污泥的热解,改性生物炭的H/C原子比均低于0.31,碳链裂解脱氢更彻底.改性生物炭中Fe、Mn保留较好,分别主要以单质和氧化物形态存在;而Zn流失较多.改性生物炭中的孔隙以介孔为主,平均孔径约3.8 nm,比表面积在50 m2·g-1以上.初始浓度约200 mg·L-1的Cd2+溶液中,Ca2+初始浓度从0 mg·L-1升高到约200 mg·L-1,Fe改性生物炭对Cd2+的吸附容量从43.17 mg·g-1降至27.88 mg·g-1,但仍较未改性生物炭高10 mg·g-1以上,在含钙溶液体系中表现出了对Cd2+更强的吸附性能.Fe2O3较MnO2和ZnO对市政污泥基生物炭吸附重金属的强化效果更好.  相似文献   

3.
采用Fe2+活化过氧化钙(Fe2+/CaO2)提高剩余污泥的脱水性能,考察初始pH值、Fe2+和CaO2投加量对污泥脱水性能的影响,并进一步探究了实现污泥深度脱水的内在机制.结果表明,初始pH值为中性,Fe2+和CaO2投加量(以VSS计)分别为3.31 mmol·g-1和3.68 mmol·g-1时,污泥的脱水效果最好,污泥比阻(SRF)和含水率(WC)分别由20.99×1012 m·kg-1和86.61%降低至3.91×1012 m·kg-1和76.15%.Fe2+/CaO2的氧化使污泥微生物细胞裂解,胞内有机物释放,胞外聚合物(EPS)降解;同时,Fe3+促使污泥颗粒再絮凝形成致密、多孔的絮体结构,有利于EPS结合水释放,实现污泥深度脱水.从技术和经济角度来看,Fe2+/CaO2工艺经济实用,在提高剩余污泥脱水能力方面具有一定的应用前景.  相似文献   

4.
采用厌氧发酵和冷冻微波联合处理剩余污泥并回收氮磷   总被引:1,自引:0,他引:1  
为了实现从剩余污泥中高品位回收鸟粪石(MAP,MgNH4PO4·6H2O),本研究考察了厌氧发酵、冷冻+微波两种污泥预处理方式促进污泥中氮、磷的释放及回收效果.试验结果表明:污泥厌氧发酵在温度30℃、pH=12、发酵时间4 d时,PO43--P和HN4+-N的最大释放量分别为224.50 mg·L-1(即7.24 mmol·L-1)和278.17 mg·L-1(即19.87 mmol·L-1),PO43--P物质的量浓度远小于HN4+-N物质的量浓度.冷冻+微波联合预处理在冷冻温度-20℃、冷冻时间48 h、微波初始pH=3、微波时间9 min时,PO43--P和HN4+-N的最大释放量分别为1011.84 mg·L-1(即32.64 mmol·L-1)和220.82 mg·L-1(即15.77 mmol·L-1),PO43--P物质的量浓度高于HN4+-N物质的量浓度.根据污泥上清液中的氮、磷含量,将厌氧发酵与冷冻+微波两种污泥预处理后的上清液按体积比1:9进行混合,使Mg:N:P物质的量比为1.6:1.4:1时,PO43--P的最高回收率为99.11%,HN4+-N的最高回收率为73.46%.X射线衍射(XRD)结果显示,回收的沉淀物主要为鸟粪石晶体.将两种污泥预处理后的上清液进行混合,有效地解决了污泥上清液中由于氮、磷比例失衡所导致的回收率下降的问题,从而实现以鸟粪石的形式高效回收剩余污泥中的氮、磷.  相似文献   

5.
以污水厂冬季膨胀期污泥(SVI=280 mL·g-1)为对象,研究了臭氧投量对SBR系统污泥沉降性能及脱氮除磷效果的影响.结果表明,低浓度投加臭氧(0.085 g·g-1,以O3/MLSS计)20 d后,菌丝体被打断,SVI降至125 mL·g-1,消除了污泥膨胀,且硝化、除磷效果不受影响.高浓度投加臭氧,污泥的沉降性能反而开始恶化,除磷效率也降至60%左右.进一步研究表明,PS/PN与SVI呈正相关关系(R2=0.9381),可表征污泥的沉降性能;臭氧除打断菌丝体外,还通过改变EPS的含量及组分影响着污泥的沉降性能.  相似文献   

6.
岳薇  李大鹏  吴玲予  王璐  汤尧禹  朱企  黄勇 《环境科学》2022,43(10):4697-4705
为实现污水中磷和工业废弃物粉煤灰的资源化利用,通过表面沉淀法将纳米CaO2负载于粉煤灰(FA)表面以及孔隙中,制备出一种高效除磷的复合材料(CaO2@FA).结果表明,粉煤灰表面负载CaO2后,其具有更大的比表面积和孔隙率,比表面积增加至4.641 m2 ·g-1,总孔容增大至0.025 cm3 ·g-1;CaO2@FA对磷的吸附过程符合Langmuir等温吸附模型,其最大吸附容量为185.776 mg ·g-1(20℃),吸附机制为化学沉淀,主要是形成羟基磷酸钙.CaO2@FA复合材料对磷的富集效率显著高于粉煤灰,并随着投加量增加,对磷的富集效率增加.共存离子中HCO3-和CO32-对复合材料吸附磷有一定的负面作用.当CaO2@FA复合材料投加量为2.0 g ·L-1时,对生活污水中磷的富集率可达93%,回收沉淀物中的有效磷含量达到1.658 mg ·g-1.土壤改良实验表明,加入回收的沉淀物可使土壤中有效磷含量增加102.9%,该复合材料回收100 mg磷酸盐的运行成本则低至0.76元.  相似文献   

7.
好氧-沉淀-厌氧工艺处理效能及抗冲击负荷研究   总被引:2,自引:1,他引:1  
以传统活性污泥法(CAS)为参照,系统研究了好氧-沉淀-厌氧(OSA)污泥减量工艺连续运行240 d,污水处理效果、污泥性能、温度波动和难降解有毒物质的冲击对系统稳定性的影响.结果表明,OSA工艺废水处理效率整体上优于CAS工艺,COD去除效率略高于CAS,总氮、总磷去除率分别比CAS高出42 .58%和53 .84%.OSA和CAS工艺每100 g好氧污泥中生物结合的磷分别是2 .69 g和1 .11 g,进一步证实了OSA工艺有生物除磷功能.由于厌氧-好氧耦合,OSA污泥沉降性能和污泥活性都得到改善,SVI稳定在97左右, SOUR和脱氢酶活性均高于CAS污泥.OSA污泥胞外多聚物中蛋白质浓度比CAS高出1 .69 mg·g-1,多糖浓度要比CAS低6 .7 mg·g-1,解释了OSA污泥沉降性能改善的原因,也证实了污泥厌氧池的插入对污泥性能、微生物种群结构的影响.OSA工艺对温度波动的影响滞后于CAS工艺3~4 d,出水COD、NH4-N、SS均升高,污泥产率Y(MLSS/COD)降低至0 .403 mg·mg-1和0 .227 mg·mg-1.OSA受对-硝基苯酚(PNP)的冲击比CAS更敏感,PNP浓度为10 mg·L-1,系统完全失去脱氮除磷功能.OSA系统受温度和PNP冲击后,比CAS更难修复.  相似文献   

8.
污泥基吸附剂被广泛用于水和土壤中各种污染物的治理,是资源化利用的有效途径.以酸性矿山废水(AMD)污泥为骨料,玉米秸秆为还原剂,膨润土为载体,采用固相还原法制备污泥复合材料,并比较了不同原料配比和不同煅烧温度制备的复合材料吸附As (Ⅴ)的性能,探究了溶液pH、吸附剂投加量和竞争离子等对材料吸附As (Ⅴ)的影响,使用SEM-EDS、XRD、FT-IR、BET和XPS等分析技术对材料性能进行表征,探讨其吸附机制.结果表明,在900℃时AMD污泥:玉米秸秆:膨润土=2 :1 :1制备出的材料吸附As (Ⅴ)效果最好,材料表面生成大量Fe3O4、Fe2 O3和Fe0颗粒.该材料对As (Ⅴ)的吸附符合准二级动力学模型和Freundlich吸附等温模型,最大吸附容量为164.5mg ·g-1,比原始AMD污泥提高了4.4倍.静电吸附、含氧官能团络合作用、铁氧化层的吸附和Fe0释放出Fe2+/Fe3+形成Fe (OH)2/Fe (OH)3,与砷酸盐的共沉淀等是复合材料吸附As (Ⅴ)的主要作用机制.  相似文献   

9.
魏红  赵江娟  景立明  钮金芬  付冉  董雯 《环境科学》2023,44(12):6811-6822
采用NaHCO3活化荞麦皮生物炭,优化得到生物炭0.25N-BC[m(NaHCO3):m(荞麦皮)=0.25:1],通过SEM、BET、XRD、Raman、FTIR和XPS等方法进行表征,分析NaHCO3对生物炭理化性质的影响,探究其对非离子型碘代X射线造影剂碘帕醇(IPM)的吸附性能和机制.结果表明,与荞麦皮生物炭相比(BC),NaHCO3活化生物炭的结构缺陷程度更高(比表面积和孔体积分别由480.40 m2·g-1和0.29 cm3·g-1增至572.83 m2·g-1和0.40 cm3·g-1,ID/IG是BC的1.22倍),表面含碳和含氧官能团数量发生显著变化,极性增强[(N+O)/C由0.15增至0.24],能够有效吸附IPM,0.25N-BC对IPM最大吸附量达到74.94 mg·g-1,是BC (7.88 mg·g-1)的9.51倍.拟二级吸附动力学和Langmuir、Freundlich等温线模型可很好地拟合0.25N-BC对IPM的吸附,吸附过程主要以化学吸附和单层、非均质多层吸附为主;孔隙填充、氢键、π—π和n—π相互作用是0.25N-BC吸附IPM的主要机制.对比不同碱[KOH、Na2CO3、NaHCO3、KHCO3和Ca (HCO32]活化荞麦皮生物炭对IPM的吸附,0.25N-BC吸附效率高,达到吸附平衡时间短,能有效去除实际水体(二沉池出水和湖水)中IPM的残留,并具有良好的循环使用性能,吸附-解吸3次后对IPM的去除率仍保持在74.91%.研究表明NaHCO3活化荞麦皮生物炭是一种绿色有效,可持续去除含碘有机物的优良吸附剂.  相似文献   

10.
利用共沉淀和水热法于生物炭(BC250、BC350、BC450、BC550和BC650)负载CuFeO2,得到的复合材料对水中四环素(TC)具有较好的去除效果.CuFeO2与BC450质量比为2 :1的CuFeO2改性生物炭(CuFeO2/BC450=2 :1)对TC的吸附性能最强.TC于CuFeO2/BC450=2 :1的吸附符合颗粒内扩散模型,表明吸附是界面和孔隙扩散控制的过程.在中性pH、298 K下,CuFeO2/BC450=2 :1对TC的Langmuir最大吸附量为82.8 mg ·g-1,远大于BC450的13.7 mg ·g-1和CuFeO2的14.8 mg ·g-1.热力学结果表明,CuFeO2/BC450=2 :1对TC的吸附是自发和吸热过程.随pH增加,CuFeO2/BC450=2 :1对TC的吸附去除呈先增加后降低的趋势,中性条件时效果最佳.CuFeO2/BC450=2 :1对TC的强吸附得益于CuFeO2负载对材料孔隙结构的改善、比表面积的增大和表面官能团、电荷属性的改变.研究结果为净化抗生素污染提供了一种高效的磁性吸附剂.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

17.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号