首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
城市污水处理厂缺氧池短程反硝化现象及影响因素研究   总被引:1,自引:0,他引:1  
调研了北方某城市污水处理厂缺氧池亚硝态氮积累的现象.该污水处理厂采用传统厌氧/缺氧/好氧(A/A/O)工艺,在缺氧池中存在稳定的短程反硝化过程,且缺氧池中亚硝态氮积累率最高可达88.4%.16S rRNA高通量测序分析表明Saccharibacteria_genera_incertae_sedisThauera可能是导致该厂缺氧池亚硝态氮积累的主要菌种,而短程反硝化现象出现的主要原因可能为外加碳源乙酸钠和系统较高的pH值.取活性污泥在COD/NO3--N为2~5条件下进行反硝化批次试验,结果表明硝态氮的还原速率均高于亚硝态氮的还原速率,且最大硝态氮到亚硝态氮的转换率均在50%左右.但碳源充足时,积累的NO2-会在NO3-被还原完后继续发生还原反应,从而导致最终亚硝态氮积累效果变差.本研究,以乙酸钠为碳源,COD/NO3--N为3可使反硝化过程获得最高亚硝态氮积累.因此,控制合适COD/NO3--N或缺氧反应时间是短程反硝化工艺运行的关键控制参数.本研究可为实际污水处理厂构建短程反硝化并进一步耦合厌氧氨氧化技术提供参考.  相似文献   

2.
补充碳源提取液对人工湿地脱氮作用的影响   总被引:6,自引:1,他引:5  
为了提高人工湿地的脱氮效率,在不同条件下分别对美人蕉、香蒲及稻杆进行稀硫酸水解,以获得相应碳源提取液.正交实验表明,稀硫酸浓度的提高和水解时间的增加都会导致碳源释碳能力的提高,稻杆在5%稀硫酸溶液中水解30 min以上,释碳能力最高.通过观察,前2 d是系统脱氮反应高峰时段.对以NH4+-N和NO3--N为氮源的脱氮过程,随C/N比升高,NO3--N和TN去除率增长明显;而NH4+-N受溶解氧制约,去除有限;随C/N比升高,碳源对系统溶解氧的竞争会进一步抑制硝化反应的彻底进行.而对以NO3--N为氮源的反硝化过程,补充碳源对TN和NO3--N的去除有明显作用;TN去除率由54%提高到95%,NO3--N去除率由48%提高到96%;中间产物NO2--N的积累与NO3--N去除率有关;当NO3--N去除率较高时,NO2--N无积累.此外,基质反硝化强度也随C/N比升高呈上升趋势,湿地填料细沙层的反硝化强度略高于碎石层.  相似文献   

3.
单级序批式生物膜反应器(SBBR)多途径生物脱氮研究   总被引:2,自引:0,他引:2  
徐峥勇  杨朝晖  曾光明  王荣娟  肖勇  许朕 《环境科学》2007,28(10):2326-2331
利用传统微生物分析技术与PCR、变性梯度凝胶电泳(DGGE)等分子生物学技术相结合的方法,对单级SBBR反应器中的主要生物脱氮途径进行分析.结果表明,亚硝化-厌氧氨氧化-反硝化途径是主要的脱氮途径,通过该途径去除的NH+4-N占总去除量的65%以上;另外2条途径则分别是亚硝化-反硝化途径以及全程硝化-反硝化途径.所有途径都采取同步和分步2种方式完成,同步方式以曝气阶段的氮素亏损形式予以表现.分步方式则依靠各种脱氮微生物在曝气阶段和厌氧阶段不同的活性程度完成,亚硝酸细菌是曝气阶段的主要活性菌种,完成NH+4-N向NO-2-N的转化,而厌氧氨氧化细菌和反硝化细菌则在厌氧阶段成为优势菌种,完成完整的生物脱氮过程.  相似文献   

4.
生活污水常温处理系统中AOB与NOB竞争优势的调控   总被引:10,自引:4,他引:6  
曾薇  张悦  李磊  彭永臻 《环境科学》2009,30(5):1430-1436
常温(19℃±1℃)条件下,采用SBR工艺处理低碳氮比(C/N)实际生活污水,研究氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)竞争优势的调控,在接种全程硝化污泥的系统中使AOB成为优势菌群,启动并维持常温短程硝化.通过控制曝气量为40 L/h使系统溶解氧处于较低水平(DOaverage<1.0 mg/L),同时结合好氧硝化时间的优化控制,即在pH值“氨谷"点前及时停止曝气的短周期定时控制,强化AOB的竞争优势.待AOB的竞争优势初步形成后(亚硝酸盐积累率NO-2-N/NO-x-N达到50%),每周期曝气时间随着NO-2-N/NO-x-N的提高由3 h逐步延长至4 h、 5 h,从而提高NH+4-N去除率,进一步增强AOB在系统中的竞争优势,短程硝化成功启动,NO-2-N/NO-x-N稳定在95%以上.FISH检测结果表明AOB大约占总菌群的9.97%.在线控制好氧硝化时间可以很好地维持短程硝化效果,NH+4-N去除率达到97%以上.研究还表明,对于全程硝化污泥常温下如果不限制溶解氧,单纯依靠短周期定时控制无法使AOB成为优势硝化菌群.  相似文献   

5.
针对污水处理厂冬季生物脱氮效率低、出水水质不达标的问题,从活性污泥中分离出1株耐低温异养硝化-好氧反硝化菌株Glutamicibacter sp.WS1.采用PCR技术扩增该菌株的脱氮功能基因,研究其对不同氮源的低温脱氮效能,通过单因素实验探究环境因子对其低温好氧反硝化性能的影响,并利用氮平衡解析其氮代谢路径.结果表明,菌株WS1含有氮代谢相关的功能基因amoAnapAnirSnirK;在15℃低温条件下,菌株WS1在以NH4+-N、NO3--N、NO2--N+NO3--N和NH4+-N+NO3--N为氮源时,对各无机氮的去除率分别为100%、98.10%、99.87%+100%和100%+94.92%;菌株WS1的最佳反硝化条件:柠檬酸钠为碳源、C/N为16、pH为8、ρ(DO)为4.5~6.8 mg ·L-1和温度为30℃;在低温(15℃)和低C/N (10)条件下,菌株WS1对NO3--N的去除率达到92.50%;异养硝化-好氧反硝化/好氧反硝化和同化作用是菌株WS1去除不同氮源底物的主要途径,其中大部分的无机氮(47%~56%)通过异养硝化-好氧反硝化/好氧反硝化作用转化为了气态氮.菌株WS1在低温污水脱氮领域具有广阔的应用前景.  相似文献   

6.
异养硝化-好氧反硝化细菌Acinetobacter junii WZ17脱氮效果良好,为确定其脱氮特性及动力学过程,利用“样条插值法”研究了菌株生长阶段,并采用Logistic模型和修正的Gompertz模型对菌株生长及氮素去除过程进行拟合,结合反硝化过程中间产物,分析菌株脱氮途径.结果显示,菌株WZ17以NH4+-N、NO3--N和NO2--N唯一氮源时,生长适应期分别为2.89、3.13和3.13 h,最大去除速率分别为8.47、5.76和5.18 mg·L-1·h-1,生长和底物去除过程分别符合Logistic模型(R2>0.9)和修正的Gompertz模型(R2>0.9).硝化过程中,NO3--N和NO2--N的积累量仅为0.13和0.14 mg·L-1,反硝化过程中,NO2--N的积累量为1.55 mg·L-1.“样条插值法”的运用可以准确地划分菌株WZ17的生长阶段,菌株WZ17对NH4+-N、NO3--N和NO2--N均具有较好的去除效果,反硝化途径为NO3--N→NO2--N→NxOy.  相似文献   

7.
生物沸石床污水脱氮效果及机理   总被引:33,自引:4,他引:29  
研究了生物沸石床对模拟村镇生活污水中各形态氮及COD等污染物的去除效果结果表明,生物沸石床对NH3--N去除效果明显且稳定,去除率大于95%,对NO3--N的去除则受水力停留时间的影响较大从机理分析,生物沸石对NH3-N的去除主要依靠化学吸附、离子交换以及生物硝化的协同作用,而对NO3--N的去除主要依赖反硝化作用.生物沸石的硝化作用明显,并受溶解氧浓度限制,沸石床中部沸石硝化强度只有表层沸石的1/2;其反硝化能力则随实验条件中C/N的不同而变化明显,当COD/TN=5时,反硝化作用最强,在时间变化规律上,前6h反硝化速率最大.  相似文献   

8.
采用SBR-ASBR组合工艺处理实际生活污水,SBR中考察缺氧/好氧时间比及温度对部分亚硝化(partial nitritation,PN)的作用,ASBR中研究COD/NO2--N(C/N)对厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)协同反硝化脱氮除碳的影响.①控制温度为25℃,在缺氧/好氧时间比为30 min:30 min,单周期交替3次时,NO2--N积累率(NiAR)于第22 d为98.06%,比亚硝态氮产生速率(SNiPR,以N/VSS计)为0.28g·(g·d)-1,同步硝化反硝化去除的TN和COD分别为12.29 mg·L-1和110.36mg·L-1.②在缺氧/好氧时间比为30 min:30 min下,温度为15℃时,丝状菌大量繁殖,污泥活性和沉降性变差;温度为30℃时,NH4+-N转化为NO2--N比例为86.83%,造成出水NH4+-N浓度过低,不能为厌氧氨氧化提供合适基质浓度;温度为25℃时,出水NH4+-N和NO2--N浓度分别为31.58 mg·L-1和35.04mg·L-1,匹配厌氧氨氧化基质比.③组合工艺脱氮性能良好,出水TN、NH4+-N和COD浓度分别稳定在13.13、4.83和69.96mg·L-1,去除率分别为83.10%、93.64%和75.11%.调节ASBR进水C/N为2.5、2.0和1.5时,C/N为2.0时厌氧氨氧化协同反硝化脱氮除碳性能最佳,出水NH4+-N、NO2--N、NO3--N和COD分别为0.09、0.25、1.04和32.73mg·L-1.  相似文献   

9.
赵丹  于德爽  李津  汪晓晨 《环境科学学报》2013,33(11):3007-3016
从稳定运行的ASBR厌氧氨氧化反应器中分离筛选出一株在缺氧和好氧条件下均具有高效反硝化能力的菌株ZD8,该菌株为假单胞属(Pseudomonas sp.),大小2 μm×0.25 μm,无鞭毛和芽孢.实验结果表明,缺氧条件下,ZD8最适合的碳源为柠檬酸钠;当C/N为10时,具有最佳的反硝化效果.菌株ZD8在缺氧条件下不具有硝化能力.在好氧条件下菌株ZD8获得最佳反硝化效果的C/N为22,最适合pH范围是7.2~9.9.菌株ZD8在好氧条件下具有高效的异养硝化能力,NH4+-N平均去除速率为8.3 mg·L-1·h-1.当以KNO3为氮源时ZD8的反硝化速率为13.1 mg·L-1·h-1;而以NaNO2为氮源时,其反硝化速率为6.98 mg·L-1·h-1.在同时存在NH4+-N和NO3--N或NH4+-N和NO2--N的系统中,菌株ZD8均首先利用NH4+-N发生硝化作用,NH4+-N的存在对反硝化具有抑制作用,并且NH4+-N对NO2--N的反硝化抑制作用更强;在同时存在NO3--N和NO2--N的系统中,菌株ZD8优先利用NO3--N进行好氧反硝化脱氮.  相似文献   

10.
环流曝气塔中生物脱氮过程的研究   总被引:3,自引:0,他引:3  
利用环流曝气塔进行同时硝化/反硝化(sND)脱氮实验.实验中,分别采用不同降解性能的碳源以及采用不同的碳源投加方式,研究反应器内的脱氮过程,监测处理过程中NOx--N浓度和溶解氧DO的变化.实验显示,在COD 800mg/L+800mg/L的分批加料方式下,NH4+-N的降解得到加强,出水中NH4+-N浓度低于3mg/L;利用较难降解物质作为碳源时,利于反应器内低溶解氧条件的出现,促进了反硝化的进行,实验在采用醇类碳源时脱氮效果好于葡萄糖的情况.  相似文献   

11.
应用新型自动呼吸-滴定测量仪在线测量pH值、HPR等信号,进行了在SBR内实现短程脱氮的研究.采用SBR处理人工合成废水,COD和NH4+-N浓度分别为360,40mg/L,温度稳定在20℃,DO低于2mg/L,基于HPR在线监测控制SBR曝气历时.运行约60d后,亚硝酸盐积累率达到88%,COD和NH4+-N去除率均在90%以上,稳定实现了短程硝化反硝化.应用HPR估计硝化过程的NH4+-N浓度发现,NH4+-N实测值与基于HPR的计算值间存在良好的线性关系,相关系数为0.9722;计算值整体低于实测值,主要是由曝气初期的滴定启动滞后所致.  相似文献   

12.
供氧充足环境下SBBR实现短程硝化的控制研究   总被引:2,自引:0,他引:2  
在供氧充足条件下对序批式生物膜反应器SBBR实现短程硝化的途径和机理进行研究.以垃圾渗滤液为处理对象,控制反应器主要环境参数为:溶解氧(DO)5mg/L, pH7.0,温度(t)25℃,采用全排水方式,进水周期为12h.通过数学推导和模型分析,确定以游离氨FA、C02和HN02浓度为直接控制因素,进水周期为间接控制因素,在SBBR反应器中实现了有效的短程硝化.结果表明,在氨氮NH ,4-N容积负荷0.52kg/(m3·d), NaHCO3浓度1.5mg/L的进水条件下, NH 4-N转化率达到89%, NO-2-N积累率达到83%,短程硝化作用显著.由此得出FA浓度是供氧充足情况下实现亚硝态氮NO-2-N积累的关键因素, CO2作为氨氧化细菌AOB的碳源,则具有进一步提升反应器性能的作用.  相似文献   

13.
常温条件下短程硝化反硝化生物脱氮研究   总被引:17,自引:1,他引:16  
对常温条件下生活废水短程硝化反硝化生物脱氮进行了研究.结果表明,在常温(25℃),pH>8.5时,通过提高进水氨氮质量浓度可以使亚硝化率达到80%以上.还对反应过程中pH的变化规律进行了研究,探讨了短程脱氮与全程脱氮相互转化的界面条件,得出游离氨对硝酸菌产生抑制的质量浓度为0.724mg/L,大于该值时会抑制硝酸菌的生长,而对亚硝酸菌不产生抑制作用.   相似文献   

14.
进水氨氮浓度不变,低DO下启动并运行了短程硝化试验,考察了反应器内的氨氮氧化和亚硝酸盐积累情况。试验结果表明反应器内氨氮几乎全部被氧化,污泥浓度从4500mg/L下降到870mg/L,此时亚硝酸盐的积累率为55%,说明只控制DO的浓度很难实现高的积累率,同时受到温度和污泥龄等的较大影响。  相似文献   

15.
pH控制生物膜移动床反应器完全亚硝化的研究   总被引:4,自引:3,他引:1  
接种硝化污泥以优势菌种法挂膜,在DO浓度为1.5~2.0 mg/L,温度为(30±1)℃,HRT为24 h的条件下,以pH控制启动移动床完全亚硝化生物膜反应器,并研究了氨氮负荷(NLR)和水力停留时间(HRT)对系统稳定性的影响.结果表明,在进水氨氮浓度为150 mg/L的情况下,pH控制在7.7~8.2,经过10 d驯化生物膜系统达稳定的完全亚硝化状态,氨氮转化率达96%以上,亚硝酸盐积累率高于95%;NLR(以NH4 -N计)从0.15 kg/(m3·d)提高到0.24 kg/(m3·d)基本不影响完全亚硝化的稳定性,氨氮转化率高于90%,亚硝酸盐积累率始终维持在96%左右;低NLR下,延长HRT由于过度曝气导致硝化类型改变为完全硝化,然而缩短HRT仍可恢复为亚硝化.  相似文献   

16.
采用膜生物反应器处理模拟生活污水,研究了短程硝化生物脱氮的效果,试验结果表明:在中温(25~30℃),曝气量为0.15m3/h、pH值为7~8的条件下,COD去除率平均值为89.0%(最高达95.4%),出水氨氮在5.0mg/L以下(平均3.1mg/L),NO2-得到了富集,出水中基本监测不出NO3-,总氮去除率平均为86.2%(最高达94.0%),且系统对有机物与氮源的耐冲击负荷能力较好;曝气量和pH值是短硝化过程的重要影响因素。  相似文献   

17.
曲洋  张培玉  于德爽  郭沙沙  杨瑞霞 《环境科学》2010,31(10):2376-2384
研究了异养硝化-好氧反硝化菌应用于短程硝化系统的可行性.采用生物强化技术将4株高效异养硝化-好氧反硝化菌投入耐盐短程硝化污泥中,考察了其对含海水污水的SBR短程硝化系统的强化效果,并比较了强化系统与原系统的差异性.结果表明,强化系统的NO2--N最大积累量比原系统降低34.92%,而且到达NO2--N最大积累量的时间比原系统提前2h.强化系统的TN和COD在硝化段中后期持续降低,硝化结束时其TN和COD去除率比原系统高出15.24%和5.39%,NH4+-N去除率和亚硝化率比原系统高出6.85%和14.47%.强化系统的pH比原系统高0.46,而ORP低25.84mV.强化系统的性能提升是由强化菌的异养硝化作用和好氧反硝化作用引起的.当受到70%海水盐度冲击时,强化系统的稳定性高于原系统,强化菌的加入有效地抑制了系统从短程硝化向全程硝化转变的趋势.在强化系统与原系统运行的各阶段,强化菌种的数量发生了变化,且随着系统排泥强化菌大量流失.本研究为异养硝化-好氧反硝化菌应用于短程脱氮系统的可行性提供了理论参考.  相似文献   

18.
Nitrifying biomass on ring-shaped carriers was modified to nitritating one in a relatively short period of time (37 days) by limiting the air supply, changing the aeration regime, shortening the hydraulic retention time and increasing free ammonia (FA) concentration in the moving-bed biofilm reactor (MBBR). The most efficient strategy for the development and maintenance of nitritating biofilm was found to be the inhibition of nitrifying activity by higher FA concentrations (up to 6.5 mg/L) in the process. Reject water from sludge treatment from the Tallinn Wastewater Treatment Plant was used as substrate in the MBBR. The performance of high-surfaced biocarriers taken from the nitritating activity MBBR was further studied in batch tests to investigate nitritation and nitrification kinetics with various FA concentrations and temperatures. The maximum nitrite accumulation ratio (96.6%) expressed as the percentage of NO2??-N/NOx??-N was achieved for FA concentration of 70 mg/L at 36°C. Under the same conditions the specific nitrite oxidation rate achieved was 30 times lower than the specific nitrite formation rate. It was demonstrated that in the biofilm system, inhibition by FA combined with the optimization of the main control parameters is a good strategy to achieve nitritating activity and suppress nitrification.  相似文献   

19.
连续流反应器短程硝化的快速启动与维持机制   总被引:6,自引:5,他引:1  
如何快速稳定地启动短程硝化工艺对低C/N比废水的处理具有十分重要的实际应用价值.针对城市污水厂以连续流工艺为主的现状,故对连续流反应器短程硝化的快速启动与维持进行研究.结果表明,利用间歇曝气,依次控制3个阶段的停/曝时间(15 min/45 min、45 min/45 min和30 min/30 min),连续流反应器经过60 d左右的运行,可以成功实现短程硝化的快速启动.控制停/曝时间为30 min/30 min,进水氨氮浓度为50或100 mg·L~(-1)时,亚硝化率分别可达90%或95%.另外,间歇曝气有利于抑制硝化菌(NOB)的活性,而缩短水力停留时间(HRT)可淘洗出NOB,两者结合可以更好地维持短程硝化.  相似文献   

20.
低温低氨氮SBR短程硝化稳定性试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在11~15℃条件下,采用序批式反应器(SBR)研究(50±5)mg/L氨氮浓度下短程硝化的稳定性.结果表明,2种溶解氧浓度(初始DO浓度分别为0.9~1.5,4.5~5.0mg/L)下反应器均能达到良好的稳定性和去除效果,150个周期内亚硝化率一直维持在95%以上,氨氧化率85%以上,平均SVI为35.22mL/g,2种DO水平下的平均氨氮污泥负荷分别为0.15,0.23kgN/(kgMLSS·d).当初始DO浓度为4.5~5.0mg/L时,21~23℃条件下无法实现短程硝化的稳定运行,经过42个周期亚硝化率降至70%,而31~33℃条件可以实现短程硝化的恢复并维持其稳定.经过不同温度条件下的对比分析及FISH试验研究,表明11~15℃与31~33℃均可抑制NOB的活性,从而有利于实现生活污水短程硝化的稳定运行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号