首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 260 毫秒
1.
刘转年  滕莹莹  范一丹 《环境工程》2021,39(11):143-148
吸附和电解是2种去除水中有机物的有效方法,为发挥吸附和电解对有机物的协同作用,将具有优良吸附导电性能的还原氧化石墨烯(RGO)与活性炭(AC)复合得到复合材料并将其黏附在Ti极片上,得到RGO/AC/Ti复合电极用于电解水中的甲基橙。利用SEM、FT-IR、BET、XRD、C-V、EIS等对复合材料及电极进行表征,考察了Ti、RGO/Ti和RGO/AC/Ti对甲基橙的电化学性能。结果表明:与RGO相比,RGO/AC的比表面积由318.1 m2/g增加到405.1 m2/g。相对于RGO/Ti,RGO/AC/Ti电极比电容值略有下降,但电容保持率提升。在电解质浓度为0.15 mol/L,极距为15 mm,电流为100 mA,pH为6时,Ti、RGO/Ti和RGO/AC/Ti电极对甲基橙的去除率分别达到48.1%、79.5%和88.8%,去除效果较好。  相似文献   

2.
制备Fe-Ni-TiO2/AC粒子电极,应用于可见光助三维电极/电Fenton(Vis-3D/EF)光电催化体系中,以RhB为目标污染物,研究了可见光光电催化对RhB的协同降解.实验优化了Fe-Ni-TiO2/AC粒子电极的制备条件,并与活性炭粒子电极、活性炭负载TiO2粒子电极在Vis-3D/EF体系中的光电催化性能进行对比,结果表明:TiO2浸渍液浓度为2g/L,Fe-Ni掺杂比为5:5,Fe:Ni:TiO2物质的量比为0.5:0.5:100的条件下制备的粒子电极在Vis-3D/EF体系中表现出最优的光电催化性能,60min对RhB的去除率达92.58%,优于活性炭粒子电极和活性炭负载TiO2粒子电极.自制粒子电极在Vis-3D/EF体系比在3D/EF体系对RhB的去除率提高29.46%,表现出明显的光催化和三维电极/电Fenton协同处理效果,协同指数为1.18,说明了自制粒子电极应用在Vis-3D/EF组合技术中,实现对RhB的可见光光电协同降解是可行的.  相似文献   

3.
以中孔硅SBA-15为硬模板、蔗糖为炭源,合成了有序中孔炭CMK-3,并以此CMK-3为载体,采用络合还原法制备了负载量为20%的催化剂Pd/CMK-3.X射线衍射(XRD)和透射电镜(TEM)的结果表明,CMK-3孔结构高度有序,呈现二维六方结构,Pd/CMK-3和Pd/AC(活性炭)催化剂中Pd纳米颗粒分散均匀,平均粒径分别为4.2 nm和4.5 nm;拉曼光谱测试表明,CMK-3比活性炭的石墨化程度更高,导电性更强;N2吸附/脱附实验表明,CMK-3具有典型的中孔结构,CMK-3的最可几孔径为4.5 nm,显著大于活性炭的0.54 nm,CMK-3的BET比表面积为1 114 m2.g-1,大于活性炭的871 m2.g-1.在对甲酸电催化氧化的循环伏安(CV)和计时电流(CA)测试中,Pd/CMK-3的初始催化活性显著高于Pd/AC,而两者在100 s后的计时电流稳定性则基本相当.  相似文献   

4.
曾凡  廖筱锋  李勇  何莹  廖利  胡辉 《环境科学学报》2017,37(11):4269-4276
以市政污泥和玉米秸秆的混合物为原材料,KOH为活化剂,制备了秸秆污泥基活性炭(AC).实验考察了秸秆与污泥用量比例,以及活化剂用量对秸秆污泥基活性炭物化特性的影响.结果显示,m(污泥)∶m(秸秆)∶m(KOH)为3∶7∶2的条件下,制备的活性炭C372以微孔为主,微孔率达到0.59,比表面积达到369.271 m2·g-1.该活性炭的穿透硫容与饱和硫容均最高,分别为5.82 mg·g-1(以H2S计)和7.00 mg·g-1(以H2S计),活性炭表面内酯基的存在不利于其对硫化氢的吸附.SEM和BET表征分析显示,随着秸秆在污泥中比例的增加,活性炭比表面积增大,对H2S的吸附量提高.活性炭C372具有较好的再生性能,二次再生后其穿透硫容与饱和硫容均能恢复55%以上.  相似文献   

5.
以污水处理厂剩余污泥为原料,以氯化锌和氯化铜为复合活化剂,采用低温炭化及中温活化方法制备了污泥活性炭。经正交优化得到最佳制备条件为:活化温度为534℃,活化时间为60 min,ZnCl2浓度为3.0 mol/L,CuCl2浓度为0.3 mol/L,碘吸附值达到534.0 mg/g。所得污泥活性炭含有大量微孔,同时也含有部分中孔和大孔,BET比表面积为784.89 m2/g,Langmuir比表面积为1 053.69 m2/g;利用污泥活性炭吸附制药废水,实验结果符合Freundlich方程,由此建立的分形吸附模型证明制备的污泥活性炭具有分形特征,其分形维数越高,则粗糙度越大,碘吸附值越高。  相似文献   

6.
活性炭性质对其吸附水中硝基苯性能的影响   总被引:1,自引:0,他引:1  
通过对活性炭进行HNO3氧化及热处理改性,研究了活性炭性质对其吸附硝基苯性能的影响.以低温液氮(N2/77 K)吸附测定活性炭的比表面积和孔容、孔径分布;以Boehm滴定、零电荷点pHPZC的测定及元素分析定量表征活性发表面含氧官能团变化.结果表明:经改性后,活性炭比表面积及总孔容略有减小,表面性质发生较大变化.改性活性炭对硝基苯的吸附容量明显改变,吸附容量大小依次为:AC1′>AC0′>AC0>AC1.经硝酸氧化后,比表面积下降、存在过多表面含氧官能团是导致AC1吸附硝基苯能力降低的主要原因;而AC1'表面适量酚羟基所提供的氢键吸附是其对硝基苯吸附量增加的主要原因.  相似文献   

7.
杀菌功能载银活性炭的NaBH_4还原法制备及其表征   总被引:1,自引:1,他引:0  
王自强  刘守新 《环境科学》2010,31(9):2129-2133
通过NaBH4还原法制备了银缓释杀菌功能载银活性炭(Ag/AC),研究了其对大肠杆菌(E.coil)的杀灭性能和抗银流失性能.以低温液氮吸附测定活性炭的比表面积,以扫描电子显微镜(SEM)-X射线能谱仪(EDS)分析Ag/AC表面形态以及Ag的含量和分布,以X射线衍射(XRD)观察Ag/AC晶体结构.结果表明,银以单质形式负载在活性炭上.活性炭的载银量、比表面积、银颗粒的粒径及分布取决于AgNO3溶液浓度.在不同AgNO3溶液浓度条件下,银的晶核形成和生长机制发生改变.随着AgNO3溶液浓度的增加,所制备Ag/AC表现出由无活性、抑菌到杀菌活性的变化规律.载银量为2.70%(质量分数)时,Ag/AC能在90 min内杀灭2×106 CFU/mL浓度的大肠杆菌,且在水中振荡600 h的银流失量为21.1%.在保持较高杀菌活性前提下,可以实现银的缓释.  相似文献   

8.
以城市污水厂脱水污泥为原料,采用ZnCl2化学活化法,通过添加适量锯末(SAC-W)或椰壳(SAC-C)制备出不同污泥活性炭,其比表面积分别为450.3 m2/g和539.4 m2/g,比纯污泥活性炭的比表面积增加了31.63%和57.67%。将污泥活性炭和选用的煤质活性炭(CAC)用于甲苯动态吸附实验,研究不同活性炭的吸附性能。结果表明,在相同的甲苯初始浓度下,平衡吸附量大小顺序为SAC-C>CAC>SAC-W,污泥活性炭表现较好的吸附性能。对污泥活性炭进行理化性能分析,发现中孔和化学吸附作用对吸附量增加有一定贡献。污泥活性炭的吸附平衡与Langmuir方程拟合较好,相关系数R2为0.995。  相似文献   

9.
易挥发有毒化合物催化燃烧试验   总被引:2,自引:2,他引:0  
在富氧条件下以2.0% Ru/Al2O3和2.0% Ru/AC(AC为活性炭)为催化剂,在固定床反应装置上研究了甲醇、氨、甲苯的催化氧化活性及反应动力学. 结果表明,Ru/Al2O3对3种反应物的催化活性比Ru/AC高,3种反应物的反应活性顺序为甲醇>氨>甲苯,其去除率随反应物浓度的增加呈先增大后减小的趋势. 反应的活化能(Ea)测定结果为甲醇<氨<甲苯. 比表面积检测(BET)和透射电镜(TEM)结果显示,Ru/Al2O3与Ru/AC的孔体积(0.54 mL/g)近似相等,而其孔径分别为9.3和2.3 nm;在大孔径的氧化铝上Ru以极细的粒径(<3 nm)形成高度分散体系,在活性炭上Ru则以较大颗粒(4~10 nm)位于活性炭表面,Ru的粒径细化及形成高分散体系可能是Ru/Al2O3的催化活性高于Ru/AC的主要原因.   相似文献   

10.
考察了以RuCl3·3H2O为前驱物,以AC(颗粒活性炭)为载体制备Ru/AC时,焙烧氛围、焙烧温度、焙烧时间对Ru/AC催化活性的影响,并利用XPS(X-ray photoelectron spectra,X射线光电子能谱分析)、BET(brunner-emmet-teller method,比表面积测定)和SEM(scanning electronic microscopy,扫描电镜)等手段对样品进行了表征. 结果表明,不同焙烧氛围中制备的Ru/AC活性有较大差异:在N2焙烧氛围中,容易形成去除BrO3-的有效活性组分(RuO2);而在真空焙烧氛围中,几乎没有活性组分的产生;在H2-N2〔φ(H2)为1.5%,φ(N2)为98.5%〕氛围中焙烧,负载在AC上的活性组分有Ru0(单质钌)和RuO2. 焙烧温度对Ru/AC去除BrO3-的性能有着较为显著的影响,高温有利于AC的石墨化进程,载体性能得到优化;但焙烧温度过高(1 000 ℃)时,会产生金属颗粒团聚现象;最适宜的焙烧温度为900 ℃. Ru/AC的活性随着焙烧时间的延长呈先增后降的趋势;焙烧时间为3 h时,载体的比表面积和孔容积得到提高且有效活性组分能够均匀地分散在AC载体上. 综上,Ru/AC催化剂的最优焙烧条件:焙烧氛围为N2,焙烧温度为900 ℃,焙烧时间为3 h. 在该条件下制备的Ru/AC利于形成去除BrO3-的活性物质RuO2,并且其能够均匀地分布在AC载体上,使催化反应进行得更为彻底,可在2 h内将BrO3-全部去除.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号