首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
采用配煤、原位浸渍和两步活化法制备了4种原位载铁活性炭(FGL1/2/3/4),并以空白炭C-GL为基础的表面铁浸渍后改性炭(Fe-GL-2/3/4)为对照,研究了原位载铁炭对水中As和腐植酸(HA)的同步吸附效能.结果表明,炭化料原位载铁促进了比表面积(SBET)和中孔结构的发育.其中,原位载铁炭FCL4(载铁量6.51%)在45Å~480Å的范围内的中孔容积(Vmes)比C-GL增加了0.1146cm3/g;而后改性载铁则造成SBET和Vmes的显著降低.原位载铁同时促进了表面碱度的增加,保证了中性条件下更好的As离子吸附能力;FCL4对As(Ⅲ)和As(V)的Langmuir最大吸附量(L-Qmax)分别达到2.566和2.825mg/g.原位载铁炭进一步发育的中孔结构促进了对HA(<10mg DOC/L)的吸附效能,FGL4对HA的Langmuir最大吸附量(QHA)达到46.25mg DOC/g.As-HA共存体系内FGL4对各组分的吸附容量有所降低,但As(Ⅲ)和As(V)的吸附容量仍达到2.325和2.675mg/g.  相似文献   

2.
酸热活化对海泡石吸附水溶液中Cd的影响机制   总被引:2,自引:0,他引:2       下载免费PDF全文
为增加SP(海泡石)的比表面积并提高其对水溶液中Cd的去除效率,采用HCl对SP进行酸热活化,探索制备HHSP(酸热活化海泡石)最佳的c(HCl)、酸改性时间和热活化温度,并比较SP和HHSP对Cd的吸附动力学和等温吸附特征,通过对吸附前后的SP和HHSP进行SEM-EDS(扫描电镜)、XRD(X射线衍射)和XPS(X射线光电子能谱)分析,以阐明HHSP吸附Cd的微观反应机理.结果表明:0.9 mol/L的HCl改性24 h后,500℃下热活化1 h制备的HHSP吸附性能最佳.准二级动力学模型和Langmuir等温吸附模型均能够很好地描述SP和HHSP对Cd的吸附特征.SP和HHSP对初始质量浓度为50 mg/L的溶液中Cd的去除率在2 h内分别达73.13%和85.96%,在24 h内达到吸附平衡.HHSP的最大饱和吸附量(qmax)为22.147 mg/g,比SP(4.200 mg/g)增加了4.23倍.酸热处理降低了SP的pH和pHpzc(零电荷点),表明在SP表面吸附活性中心增多.SEM-EDS显示,酸热活化未改变SP的纤维状结构,Cd吸附量由SP的1.57%增至HHSP的2.13%.XPS分析表明,SP和HHSP对Cd的吸附作用包括了表面羟基(-OH)络合作用以及产生CdCO3、CdCl2、CdO和Cd(OH)2沉淀.XRD分析表明,酸改性通过清除SP的CaCO3成分,比表面积增加,从而增加了HHSP对Cd的吸附量.研究显示,酸热活化可增加HHSP对Cd的吸附效能,为利用HHSP有效控制稻田土壤Cd生物有效性提供了有益途径.   相似文献   

3.
在水解法合成二氧化钛(TiO2)过程中,同步利用共沉淀方法以不同的方式在TiO2结构中赋予含P和含Fe基团,制备出铁基磷酸化复合材料P-FeN-TiO2和FeP-TiO2,并借助SEM、EDS和FTIR等表征分析材料吸附前后的结构形貌、元素组成和基团构成等.然后,在不同的pH值、温度和溶液初始浓度等条件下开展材料吸附水体中Cd(Ⅱ)的性能测试.结果表明,在pH值为6时,P-FeN-TiO2和FeP-TiO2对Cd(Ⅱ)吸附性能最佳,其最大理论吸附量分别为62.50 mg·g-1和4.37 mg·g-1.相比而言,P-FeN-TiO2的吸附性能要优于FeP-TiO2.它们均属于以化学反应为主的单分子层吸附,且吸附容量随着温度升高而增加.由于重金属离子富集系数的差异性,在存在其他重金属离子的情况下,复合材料竞争吸附的顺序为Pb(Ⅱ)>Cu(Ⅱ)>Cd(Ⅱ).最后...  相似文献   

4.
为实现废弃水稻秸秆资源化利用及其治理水环境中Cd2+的污染问题,用KMnO4、KOH、H2O2、KOH+H2O2、酒石酸、柠檬酸、TiO2对水稻秸秆进行改性,制成不同的水稻秸秆吸附剂来吸附溶液中的Cd2+,利用扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱仪、比表面积及孔径分析仪和Zeta电位仪对改性前后的水稻秸秆进行表征分析,吸附过程采用准一级动力学方程、修正一级动力学方程、准二级动力学方程和颗粒内扩散模型进行拟合.结果表明:在Cd2+初始浓度100mg/L,pH7,水稻秸秆添加量为10g/L,25℃条件下,7种改性水稻秸秆吸附Cd2+的效果不同,其中经KMnO4改性的水稻秸秆对Cd2+的吸附效果最好,吸附量达10.024mg/g,对Cd2+的去除率达到99.24%,比未改性水稻秸秆提高了99.44%,其次是KOH和KOH+H2O2改性处理的水稻秸秆,吸附量分别达到了9.302和9.189mg/g,对Cd2+的去除率分别达92.62%和90.82%,比未改性水稻秸秆分别提高了85.07%和82.83%.改性处理水稻秸秆吸附Cd2+的效果顺序为:KMnO4 > KOH > KOH+H2O2 > TiO2 > H2O2 > 柠檬酸 > 酒石酸.对于Cd2+的吸附过程,准一级速率方程只能较好地描述吸附初始阶段,准二级动力学方程则能很好地描述吸附的整个过程.经KMnO4,KOH和KOH+H2O2改性的水稻秸秆是具有潜在利用价值的废水中Cd2+吸附剂.  相似文献   

5.
连斌  吴骥子  赵科理  叶正钱  袁峰 《环境科学》2022,43(3):1584-1595
制备得到了一种铁锰氧化物-微生物负载生物质炭材料(FM-DB),以同时去除水体中Cd(Ⅱ)和As(Ⅲ)污染.铁锰氧化物-微生物负载生物质炭材料(FM-DB)中铁锰氧化物(FMBO)和山核桃蒲生物质炭(CCSB)的最佳比例为3%+3%.FM-DB耐酸性、机械强度和传质性能良好,在二元体系下对Cd(Ⅱ)和As(Ⅲ)的最大去除率高达77.29%和99.94%.表征分析证实了FM-DB制备成功且具有丰富的官能团结构.FM-DB对Cd(Ⅱ)和As(Ⅲ)单因素吸附实验结果表明,不同条件下复合材料对Cd(Ⅱ)和As(Ⅲ)均有一定的吸附能力,但受到初始pH、平衡时间和初始浓度的影响.FM-DB对Cd(Ⅱ)和As(Ⅲ)吸附动力学和吸附热力学结果表明,复合材料对Cd(Ⅱ)和As(Ⅲ)的吸附平衡时间分别为3.5 h和8 h,最大吸附容量分别为59.27 mg·g-1和84.73 mg·g-1;复合材料对Cd(Ⅱ)和As(Ⅲ)吸附主要受到材料表面电子的交换及共用、络合作用的影响,整个吸附过程则既存在单层吸附,也存在不均匀表面的多层吸附,是一个多步骤过程,可能包括外表...  相似文献   

6.
以氧化石墨烯(GO)为原料制备MnO2@Fe3O4/石墨烯(RGO),考察吸附过程中MnO2@Fe3O4/RGO投加量、溶液pH值、初始浓度和吸附时间等因素对Pb(Ⅱ)的去除率和吸附量的影响,并运用BET比表面积测试法计算MnO2@Fe3O4/RGO的比表面积和平均孔径,采用扫描电子显微镜(SEM),振动样品磁强计(VSM),X射线衍射(XRD)和X射线光电子能谱(XPS)等对样品进行表征.结果表明:MnO2@Fe3O4/RGO的比表面积为89.164m2/g,孔容为0.284cm3/g;随着pH值在2~10范围内增加,复合材料对Pb(Ⅱ)的去除率先增大后减小,pH=6时达到最大值.通过4种等温吸附模型(Langmuir、Freundlich、Temkin、D-R模型)和4种吸附动力学模型(伪一级动力学、伪二级动力学、Elovich、颗粒内扩散模型)拟合发现,MnO2@Fe3O4/RGO对Pb(Ⅱ)吸附符合伪二级动力学模型.吸附等温线更符合Langmiur模型,属于典型的单分子层吸附,以化学吸附为主,最大吸附量为265.3mg/g.  相似文献   

7.
为探索高效且快速去除水溶液中Cd (Ⅱ)污染方法,采用自制磁性四氧化三铁负载氧化石墨烯(Fe3O4/GO)纳米复合材料对水溶液中Cd (Ⅱ)进行去除,利用单因素实验确定影响因素水平范围(初始Cd (Ⅱ)浓度、温度、反应时间、初始pH值),并采用响应面法(RSM)及人工神经网络-遗传算法(ANN-GA)对去除水溶液中Cd (Ⅱ)的影响因素(4因素3水平)进行优化,利用等温吸附、动力学及热力学参数研究吸附剂性能.通过扫描电子显微镜(SEM)、X射线衍射仪及超导量子干涉器件(SQUID)对复合材料表征.结果表明,平均粒径为30.9nm的磁性Fe3O4/GO纳米复合材料被成功制备.RSM用于磁性Fe3O4/GO纳米复合材料对水溶液中Cd (Ⅱ)去除条件优化,预测去除率达到86.451%,验证试验为82.220%,对应条件:温度为20.14℃,反应时间为57.78min,初始pH值为6.41和初始Cd (Ⅱ)浓度为11.18mg/L; ANN-GA优化条件后的预测去除率为89.722%,验证试验为87.723%,相应条件:温度为29.96℃,pH值为5.49,初始Cd (Ⅱ)浓度为28.36mg/L,反应时间为65.78min.根据模型R2值,预测的最大去除率及验证试验,ANN-GA模型性能及预测能力均高于RSM.RSM方差分析表明4个因素对磁性Fe3O4/GO纳米复合材料去除水溶液中Cd (Ⅱ)的影响大小为:初始Cd (Ⅱ)浓度>温度>反应时间>pH值.吸附机理分析结果显示,Fe3O4/GO纳米复合材料对Cd (Ⅱ)吸附过程同时存在着物理吸附和化学吸附.结合ANN-GA优化,利用磁铁实现且快速分离,磁性Fe3O4/GO纳米复合材料用于去除Cd (Ⅱ)是可行的.关键字:Cd (Ⅱ);四氧化三铁负载氧化石墨烯;单因素实验;响应面法;人工神经网络-遗传算法中图分类号:X53  相似文献   

8.
以高锰酸钾改性商业椰壳生物炭(MCBC)为吸附剂,探讨了它对Cd(Ⅱ)和Ni(Ⅱ)的去除性能及机制.当初始pH和MCBC投加量分别为5和3.0 g·L-1时,Cd(Ⅱ)和Ni(Ⅱ)的去除率均高于99%.Cd(Ⅱ)和Ni(Ⅱ)的去除更符合准二级动力学模型,表明它们的去除以化学吸附为主;Cd(Ⅱ)和Ni(Ⅱ)去除的控速步骤为快速去除阶段,而该阶段的速率取决于液膜扩散和颗粒内扩散(表面扩散).Cd(Ⅱ)和Ni(Ⅱ)主要通过表面吸附和孔隙填充附着在MCBC上,表面吸附的贡献更大;MCBC对Cd(Ⅱ)和Ni(Ⅱ)的饱和吸附量分别为57.18 mg·g-1和23.29 mg·g-1,约为前驱体(椰壳生物炭)的5.74倍和6.97倍.Cd(Ⅱ)和Ni(Ⅱ)的去除是自发的、吸热的,具有较为明显的化学吸附热力学特征.Cd(Ⅱ)通过离子交换、共沉淀、络合反应和阳离子-π相互作用附着在MCBC上;而Ni(Ⅱ)则是通过离子交换、共沉淀、络合反应和氧化还原反应被MCBC去除;其中,共沉淀和络合作用是Cd(Ⅱ)和Ni(Ⅱ)表面吸附的主要方式,且络合...  相似文献   

9.
利用磷溶菌(PSB)对稻壳(RB)和污泥(SB)生物炭进行不同时间的改性,研究了其对水体中Pb2+和Cd2+(1000mg/L)的修复机制.主要通过测定改性生物炭的理化特性和重金属含量,并利用结构方程模型研究了微生物改性生物炭对重金属的吸附机理.结果表明,PSB显著改善生物炭的孔径结构、比表面积BET (增加了12.5%~175.0%)和表面官能团.特别是还增加了生物炭中C和P元素的释放,促进了生物炭表面的生物矿化机制.PSB改性显著提高了生物炭对Pb2+和Cd2+的吸附作用(RB提高:Pb2+=9.5%~34.5%,Cd2+=34.7%~219.9%,SB提高:Pb2+=65.3%~101.3%,Cd2+=106.6%~248.6%).通过Pb和Cd的修复差异,发现不同重金属对微生物的胁迫是导致改性生物炭对重金属的修复反应路径相反的原因.此外,结构方程模型证实6~12h的PSB改性效果最好,且BET不是主要影响因素.不同的生物质炭改性后的修复机制也存在明显差异,孔径结构(Rmax2=0.99)是改性RB的主要吸附途径,化学沉淀(Rmax2=0.99)是改性SB的主要吸附途径.  相似文献   

10.
采用K. oxytoca菌株制成生物吸附剂(LRC)对亚甲基蓝染料(MB)和Pb(Ⅱ)二元体系的吸附进行实验研究,并结合高等统计物理模型对吸附机理进行阐述.通过静态吸附实验研究了在不同接触时间和溶液pH条件下对LRC去除染料MB和Pb(Ⅱ)的影响,并通过实验研究发现两种污染物在二元吸附体系中表现出了吸附拮抗作用.利用单能量单吸附层(MSA)和单层扩展(MBA)统计物理模型对一元吸附体系和二元吸附体系进行拟合,均具有较好的拟合结果 .在单元体系中,LRC对MB和Pb(Ⅱ)最大饱和吸附量分别为163.61 mg·g-1和129.83 mg·g-1;在二元体系中,LRC对MB和Pb(Ⅱ)的最大饱和吸附量分别为141.47 mg·g-1和96.99 mg·g-1.同时,该模型中的拟合参数(ni、Dm、Ei)能够阐述其不同的物理意义,并提出了新的吸附质与吸附剂之间的结合机制.  相似文献   

11.
为有效去除水中Cd(Ⅱ),以TiO2纳米粉和NaOH为原料,调节水热反应温度分别为100、120、150和190℃,制备出了不同形貌的TNs(钛酸盐纳米材料),分别记为TNs-100、TNs-120、TNs-150和TNs-190,并对其形貌、结构、比表面积、化学组成等物理化学性能进行了表征;通过对水中Cd(Ⅱ)的静态吸附试验,考察了TNs对Cd(Ⅱ)的吸附性能.结果表明:随着合成温度的升高,TNs的形貌逐渐从纳米片演变成纳米管,管长逐渐变长,最后变成纳米棒.TNs-100的晶型结构主要是锐钛矿型;随着温度升高,结晶度逐渐增强;TNs-190出现了部分金红石相.TNs-150对Cd(Ⅱ)的吸附能力最强,最大平衡吸附量为254.66 mg/g,最佳吸附pH为5.0.再生的TNs-150对Cd(Ⅱ)循环吸附6次的去除率和解吸率均可达93%以上.TNs-150对Cd(Ⅱ)的吸附过程符合准二阶动力学方程和Langmuir吸附等温模型,吸附机制主要是TNs层间Na+和H+与溶液中Cd(Ⅱ)的离子交换.研究显示,TNs的饱和吸附量均高于同类吸附剂,能有效去除水中Cd(Ⅱ).   相似文献   

12.
为了促进污水处理厂剩余污泥的资源化利用,探索S-HA(sludge-based humic acid, 污泥腐殖酸)对溶液中重金属Cd2+的吸附特性.采用国际腐殖酸协会(IHSS)推荐的方法提取S-HA,通过元素分析、FT-IR(傅里叶红外光谱分析)和SEM-EDS(外观形态分析)等方法,考察溶液pH和共存阳离子对吸附过程的影响,并对吸附过程分别进行了吸附动力学模型、等温吸附模型和吸附热力学模型拟合,同时通过对比S-HA吸附前后的红外光谱和扫描电镜-能谱图片,探索S-HA对Cd2+的吸附机制.结果表明:①S-HA表面呈松散的簇团状,含有大量的羧基、醇羟基和酚羟基等含氧官能团,芳香度较高,含有较多的脂肪链结构;S-HA在吸附水中Cd2+的过程中,Cd2+与S-HA表面上的酚羟基、羧基等官能团发生了络合作用.②S-HA对Cd2+的吸附量随溶液pH升高而增加,溶液中Na+、NH4+和Ca2+等共存阳离子的存在不利于S-HA对Cd2+的吸附,其中Ca2+的存在对S-HA吸附Cd2+影响最大.③S-HA对Cd2+的吸附由快吸附、慢吸附和吸附平衡3个阶段组成,吸附平衡时间为12 h;吸附过程符合准二级动力学模型,其整体吸附速度由液膜扩散和颗粒内扩散共同控制;吸附等温线符合Freundlich等温吸附模型,25℃下的最大吸附量为19.29 mg/g,Cd2+在S-HA上的吸附是自发吸热反应.研究显示:污水处理厂剩余污泥提取的S-HA对Cd2+具有较好的吸附效果;S-HA对Cd2+的吸附过程同时存在着物理吸附和化学吸附;高pH对S-HA吸附Cd2+有促进作用,而高离子强度对S-HA吸附Cd2+有抑制作用.   相似文献   

13.
不同温度桉树叶生物炭对Cd2+的吸附特性及机制   总被引:2,自引:0,他引:2  
通过元素分析、BET-N2、Zeta电位、Boehm滴定,SEM-EDS、FTIR等分析方法对不同热解温度(300、500和700℃)下制备的桉树叶生物炭进行表征,研究了3种生物炭(BC300、BC500和BC700)对Cd2+的吸附特性与机制.结果表明,随温度升高,生物炭产率下降,灰分、pH值和Zeta负电荷量上升,比表面积增大.当Cd2+浓度为20mg/L时,平衡时间依次为80min(BC700)<360min(BC500)<540min(BC300),均符合准二级动力学模型(R2>0.98),以化学吸附为主.BC300和BC500吸附过程均符合Langmuir和Freundlich模型,BC700更符合Freundlich模型,最大吸附量依次为BC700(94.32mg/g) > BC500(67.07mg/g) > BC300(60.38mg/g).在Boehm滴定结果分析的基础上,结合FTIR和SEM-EDS,表明生物炭吸附机制主要为静电吸附和官能团络合作用.BC700吸附性能最佳,原因可能是具有较大的比表面积、较多的负电荷量和较为丰富的官能团.  相似文献   

14.
以传统中药-黄芪废渣为原料,分别在200℃、400℃、500℃、600℃和700℃的厌氧氛围下热解制备生物炭材料(BC200、BC400、BC500、BC600和BC700),并利用BET比表面积分析、FTIR光谱分析、扫描电子显微镜等方法对其进行表征,同时考察不同投加量、吸附时间、初始浓度和pH值下生物炭对磺胺甲基嘧啶的吸附特征.结果表明,随制备温度的升高,生物炭的表面积及吸附性能也显著增加.相比原状黄芪渣(SBET=0.42m2/g),BC700的BET比表面积(SBET=155.69m2/g)增大370倍,对磺胺甲基嘧啶的吸附容量增加185倍.BC700对磺胺甲基嘧啶的等温吸附过程符合Langmuir模型(R2=0.9977),最大吸附容量为11.96mg/g,吸附反应过程满足准二级动力学方程(R2>0.994),且为化学吸附.同时随着溶液初始pH值和投加量的升高,生物炭的吸附容量先增大后减小,最佳吸附pH值为4.  相似文献   

15.
为了提高活性炭吸附材料对非极性污染物的吸附性能,采用碱[(NaOH溶液)联合铜(Cu(CH3COO)2溶液]对珠状活性炭(beaded active carbon,BAC)进行改性,利用BET、SEM、Boehm滴定和FT-IR对改性前后的活性炭进行表征,并采用动态吸附法和Yoon-Nelson吸附理论模型研究了不同改性方法对活性炭吸附甲苯穿透曲线、饱和吸附量的影响及吸附机理.结果表明:改性后BAC表面不规则的孔隙增多,比表面积和微孔容积减少,平均孔径变化不显著,表面Cu含量明显升高;不同浓度碱铜联合改性后BAC对甲苯的吸附性能均提高,当NaOH溶液浓度为8 mol/L、Cu(CH3COO)2溶液质量分数为0.5%时,联合改性效果最好,此时改性后BAC对甲苯的饱和吸附量较改性前增加了50.9%,吸附穿透时间延长了342.9%,吸附平衡时间延长了77.4%.研究显示:较高浓度的碱联合较低浓度的铜溶液对活性炭改性,能显著提高吸附甲苯性能;改性后BAC对甲苯的吸附性能受自身孔隙结构和表面官能团的共同影响,且表面酸性官能团影响显著,表面金属铜与甲苯的结合作用是主要的吸附过程.   相似文献   

16.
为获得同时具有优良的吸附性能和磁分离特性的生物吸附材料,以汽爆秸秆为基质,采用戊二醛交联剂法制备了磁性聚乙烯亚胺功能化秸秆吸附剂(Fe3O4-PEI-RS),通过SEM、XRD、FTIR、XPS和VSM等手段表征了材料的结构和性质,测定了Pb(Ⅱ)在Fe3O4-PEI-RS上的吸附性能,考察了pH、吸附时间、吸附剂投加量、Pb(Ⅱ)初始浓度、温度等因素对吸附的影响.结果表明,Fe3O4-PEI-RS对Pb(Ⅱ)的吸附具有强烈的pH依赖性;吸附时间对Pb(Ⅱ)的吸附效率有明显的影响,在180 min时吸附达到平衡,吸附过程符合准二级动力学模型;Langmuir和Freundlich模型都能很好地描述Pb(Ⅱ)在Fe3O4-PEI-RS上的吸附行为,20、30和40℃时最大吸附量分别为192.31、200.00和212.77 mg/g;热力学参数△G < 0,而焓变△H>0、△S>0,说明该吸附属于熵增加的自发吸热反应过程,升温有利于吸附.重复试验表明,EDTA作解吸剂,经5次吸附/解吸附循环后吸附剂仍能保持较高的吸附容量.研究显示,所制Fe3O4-PEI-RS对Pb(Ⅱ)具有较高的吸附容量,稳定性好、可循环利用,能在磁场下实现快速分离.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号