首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
鞍山大气颗粒物浓度的变化特征   总被引:2,自引:1,他引:1  
利用鞍山大气成分监测站Grimm180观测的2007年颗粒物数浓度,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)以及台站的常规气象观测资料,分析了该地区颗粒物数浓度的谱分布、质量浓度的变化特征及与气象条件的相关性. 结果表明:颗粒物数浓度谱分布符合Junge分布;参数υ与能见度呈负相关,υ值越大且PM0.45占PM10的数浓度比例小于90%,能见度较差;颗粒物质量浓度日变化呈双峰特征,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)之间有很好的相关性,ρ(PM2.5)/ρ(PM10)平均值为0.654,ρ(PM1.0)/ρ(PM2.5)的平均值为0.832,ρ(PM1.0)/ρ(PM10)平均值为0.545;鞍山地区年主导风向为SE,颗粒物质量浓度变化受辽宁沙尘移动路径的影响较小,主要受排放累积型污染影响,其中大雾天气条件下颗粒物质量浓度较高,大雾期间的回归方程截距较年平均回归方程的大,这对研究颗粒物质量浓度的突变特性具有指示作用.   相似文献   

2.
为考察光散射法和β射线衰减-光散射联用法的适用性,以β射线衰减法颗粒物自动监测仪(BAM)为标准,于2016年2月4日-4月18日,在中国环境科学研究院利用β射线衰减-光散射联用法颗粒物自动监测仪(MP-CPM)与光散射法传感器对ρ(PM10)和ρ(PM2.5)测量结果进行了对比.结果表明:① MP-CPM与BAM测量ρ(PM10)的结果具有较好的一致性,相关系数为0.92,平均相对偏差为0.04%;ρ(PM2.5)结果一致性较差,相关系数为0.69,MP-CPM测量ρ(PM2.5)整体较高于BAM,平均相对偏差为45.8%.② 光散射法传感器与BAM测量ρ(PM2.5)结果一致性较好,相关系数为0.85,平均相对偏差为11.24%,但ρ(PM10)远低于BAM,平均相对偏差为-44.64%.在特殊污染情景下,光散射法将因受到较大影响而严重错估颗粒物浓度.烟花燃放期间,MP-CPM和光散射法传感器严重低估颗粒物浓度,与BAM测量颗粒物浓度的平均相对偏差均低于-50%;沙尘污染过程中,MP-CPM严重高估ρ(PM2.5),与BAM测量ρ(PM2.5)结果平均相对偏差为79.27%,光散射法传感器严重低估ρ(PM10),与BAM测量ρ(PM10)结果平均相对偏差为-59.35%.研究显示,不同原理的仪器,在不同的使用场景下应该区别对待.   相似文献   

3.
为研究京津冀地区典型城市大气细颗粒物及其碳质组分的时空变化特征及来源,于2016年12月28日—2017年1月22日及2017年7月1—26日,对北京市与石家庄市PM2.5(细颗粒物)及PM1(亚微米颗粒物)进行采集,使用DRI(热光碳分析仪)检测PM2.5与PM1中ρ(OC)与ρ(EC),并对其碳质组分来源进行分析.结果表明:①采样期间,冬、夏两季PM2.5与PM1中ρ(OC)均为石家庄市采样点远高于北京市采样点;冬季PM2.5与PM1中ρ(EC)均为石家庄市采样点高于北京市采样点,夏季则略有不同.②冬季污染日,北京市采样点ρ(PM2.5)与ρ(PM1)均为石家庄市采样点的1.08倍,PM2.5与PM1中的ρ(OC)分别为石家庄市采样点的1.14和1.12倍,石家庄市采样点PM2.5与PM1中ρ(EC)分别为北京市采样点的1.15和1.28倍;冬季重污染日,北京市采样点的ρ(PM2.5)与ρ(PM1)分别为石家庄市采样点的1.03和1.04倍,PM2.5和PM1中的ρ(OC)分别为石家庄市采样点的1.23和1.22倍,石家庄市采样点PM2.5和PM1中的ρ(EC)分别为北京市采样点的1.03和1.16倍.夏季污染日,石家庄市采样点ρ(PM2.5)与ρ(PM1)分别为北京市采样点的1.16和1.30倍,PM2.5与PM1中ρ(OC)分别为北京市采样点的1.64和2.71倍,两个采样点ρ(EC)相近.③冬、夏两季PM2.5与PM1中ρ(SOC)/ρ(OC)均较高,冬季北京市采样点分别为48.09%和54.29%,石家庄市采样点分别为44.98%和48.09%,夏季北京市采样点分别为48.47%和61.50%,石家庄市采样点分别为61.52%和63.55%,表明SOC更易富集于亚微米粒子中.④冬季北京市和石家庄市两个采样点PM2.5与PM1中碳质组分均主要来源于生物质燃烧、燃煤和机动车尾气;夏季北京市采样点PM2.5与PM1中碳质组分主要来源于机动车尾气,石家庄市采样点PM2.5与PM1中碳质组分主要来源于燃煤和机动车尾气.研究显示,北京市和石家庄市两个采样点大气细颗粒物及其碳质组分浓度存在时空分布和污染来源差异.   相似文献   

4.
在城市内选取包括城市背景空气、市区以小型客车为主的路边和大量大型货车通行的3个路边采样点进行了空气中PM2.5和PM10的采集,建立了利用超高效液相色谱串联三重四级杆质谱仪(UPLC-MS/MS)对颗粒物中苯并噻唑及其5种衍生物(BT、2-NH2-BT、2-OH-BT、MBT、MTBT)的检测方法,并对其污染特征及暴露风险进行了分析.结果显示,3点位PM2.5和PM10样品中均为BT的浓度最高,占总浓度的44.4%~55.2%;各化合物浓度呈路边环境高于城市背景环境,表明高制动频率导致路边空气中含有较多的轮胎磨损颗粒物;除2-NH2-BT外,其它4种BTs化合物与PM2.5和PM10的浓度之间具有较好的线性关系,表明二者具有相同的来源;各化合物在PM2.5和PM10中浓度的比值(PM2.5/PM10)范围为0.41~0.95,说明BTs更易于富集在较细颗粒物中或轮胎磨损排放的细颗粒较多.暴露评价结果显示,路边工作者对BTs的日呼吸暴露量大于其他人,可能具有更高的健康风险其中BT的贡献量最大.  相似文献   

5.
基于甘肃省2018~2019年颗粒物质量浓度监测数据,分析了全省大气颗粒物浓度的时空变化及排放特征,并利用HYSPLIT后向轨迹模式研究了颗粒物传输路径.结果表明:颗粒物(PM10和PM2.5)空间分布呈现区域特征:PM10浓度高值位于河西走廊地区,由北向南呈阶梯式递减;PM2.5以陇中地区为高值中心,向南北两侧递减,陇南地区为全省颗粒物清洁区.不同地区PM10与PM2.5地面浓度季节变化特征存在差异,陇中、陇东和陇南地区PM10和PM2.5浓度变化特征一致,陇中和陇东地区颗粒物(PM10与PM2.5)浓度冬高夏低,陇南地区则为冬高秋低;河西走廊PM10和PM2.5浓度季节变化不同,PM2.5冬高夏低,PM10春高夏低.后向轨迹聚类结果表明全省春季、冬季均受到来自中亚及新疆的偏西气流影响,该路径输送下可吸入颗粒物(PM10)浓度明显高于其他路径,是典型的沙尘输送路径,4大分区受沙尘传输影响程度依次为河西 > 陇中 > 陇东 > 陇南,来自陕西、川渝的偏东路径是陇南地区颗粒物的主要输送路径,该路径下PM2.5/PM10比值大于0.5,明显高于偏西路径,说明偏东路径人为源污染贡献显著.研究结果有助于全面认识全省颗粒物污染特点、为分区制定颗粒物污染防治政策、以及区域污染协同治理提供科学的参考依据.  相似文献   

6.
为探究典型“组群式”城市——淄博市夏季大气颗粒物中水溶性离子化学特征及来源,于2016年8月对淄博市6个城市点(桓台、张店、临淄、淄川、博山、周村)、2个郊区点(沂源、高青)及1个清洁对照点(鲁山)同步进行PM2.5和PM10采样,分析了大气颗粒物质量浓度及9种水溶性离子的空间分布特征,并利用主成分分析方法探讨了PM2.5和PM10中水溶性离子的主要来源.结果表明:①淄博夏季各点位(清洁对照点除外)PM2.5和PM10质量浓度日均值范围分别为57.2~112和77.4~163 μg/m3,空间分布特征表现为城市点>郊区点>清洁对照点;各点位PM2.5/PM10(质量浓度之比)在0.61~0.80之间,表明淄博夏季大气颗粒物污染以PM2.5为主.②水溶性离子在PM2.5和PM10中占比分别为53.3%和48.5%,其中二次无机离子分别占总离子浓度的91.4%和83.7%,表明大气颗粒物主要以二次离子为主,并且主要富集在PM2.5中;PM2.5中∑阴离子/∑阳离子(摩尔浓度之比)为1.07,PM10中该比值为0.87,说明PM2.5接近中性,而PM10呈弱碱性.③淄博夏季各点位离子来源具有一定的空间差异性,城市点、郊区点与清洁对照点间的CD(分歧系数)均高于0.2,而城市点间CD值低于0.2,说明城市点位间的水溶性离子的化学性质较为相似.④主成分分析表明,淄博夏季大气PM2.5中的水溶性离子可能主要来源于工业源、生物质锅炉、燃煤、二次源、道路尘及建筑尘,而PM10中的离子主要来源于道路尘、建筑尘、海盐及二次源.研究显示,淄博市颗粒物污染严重,具有明显的空间分布特征,水溶性离子来源复杂,应采取分区、多源控制的污染防治对策.   相似文献   

7.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施.   相似文献   

8.
对目前大气环境颗粒物监测中采用的基于光散射法的3种型号传感器进行了评测研究,其中A和B是用于室内环境监测,C用于室外环境监测.对3种型号颗粒物传感器与基于β射线方法的标准仪器MATONE BAM-1020对比,对传感器的变异性、时间序列、传感器与标准仪器的线性相关性、其他因素影响、数据质量五个方面开展了分析.结果表明:各型号颗粒物传感器之间有较强相关性(R2达到了0.95以上);3种颗粒物传感器与标准仪器测量结果吻合度较高,R2分别为0.58,0.80,0.61,且在整个测试时间段内,传感器相对于标准仪器来说高估了PM2.5;高的相对湿度(RH>50%)和PM2.5/PM10(ratio)会对传感器产生影响.A、B、C三种型号传感器PM2.5数据平均绝对误差(MAE)分别为23.31,10.14,28.17μg/m3;归一化均方根误差(RMSE)分别为25.80,14.01,32.98μg/m3,准确性(A%)分别为51.39%,72.97%,46.51%.  相似文献   

9.
青岛环境空气PM10和PM2.5污染特征与来源比较   总被引:9,自引:1,他引:8  
年分别在青岛设6个和2个采样点采集PM10和PM2.5样品,分析二者质量浓度及颗粒物中多种无机元素、水溶性离子和碳等组分的质量浓度,以研究PM10及PM2.5的污染特征. 采用CMB-iteration模型估算法,确定一次源类及二次源类对PM10和PM2.5的贡献,利用统计学方法比较PM10和PM2.5的污染源. 结果表明:青岛大气颗粒物质量浓度季节变化显著,表现为春、冬季高,夏、秋季低;Na、Mg、Al、Si、Ca和Fe元素主要富集在PM10中,SO42-、NO3-、EC和OC主要富集在PM2.5中;城市扬尘、煤烟尘、建筑水泥尘及海盐粒子等粗粒子在PM10中的分担率较PM2.5中的高,分担率分别为28.7%、17.2%、7.16%及4.47%;二次硫酸盐、二次硝酸盐、机动车尾气尘及SOC(二次有机碳)等在PM2.5中的分担率较PM10中的高,分担率分别为19.3%、8.97%、13.7%及6.07%;由PM10与PM2.5化学组分的分歧系数可见,春、秋季PM10和PM2.5化学构成存在一定差异,而冬、夏季二者的化学构成相似.   相似文献   

10.
为研究哈尔滨市大气细颗粒物的污染特征及其毒效应,分别采集PM2.5、PM1.0样品,分析其质量浓度、数浓度的变化分布特征以及对小鼠肺损伤的影响.结果表明:2017年全年PM2.5、PM1.0的质量浓度均呈冬高夏低趋势;PM1.0质量浓度占PM2.5总质量浓度的62%~85%,PM1.0数浓度变化趋势为两边高中间低,且其大小与温度呈负相关,与相对湿度无显著相关性;研究大气颗粒物对小鼠肺损伤影响时发现,染毒组小鼠肺组织细胞中LDH、ACP、AKP、ALB增高,说明大气颗粒物PM2.5和PM1.0对小鼠肺组织细胞具有毒效应;肺灌洗液中MDA、NO、NOS水平升高,SOD活性下降,说明PM2.5和PM1.0都使机体发生氧化损伤,且PM2.5和PM1.0质量浓度增加,会使小鼠肺组织细胞毒效应增强,由此引发的机体氧化损伤程度增大.  相似文献   

11.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

12.
利用卡尔费休法可直接测定PM2.5水分含量,方法精密度及准确度均较好.将该方法应用于北京市城区站点2020年全年的PM2.5分析,结果显示PM2.5水分浓度年均值为(5.0±4.1)µg/m3,在PM2.5占比为(12.5±4.8)%,与PM2.5质量浓度呈显著相关.水分质量浓度与PM2.5的质量浓度月度及季节变化趋势基本一致.研究发现,随着空气污染加重,水分质量浓度及其在PM2.5占比均呈上升趋势,二者相关性明显增强.可见污染发生时,水分增加有利于颗粒物吸湿增长从而推高污染水平,对PM2.5的贡献同步增强.当沙尘污染发生时湿度处于同期较低水平,不利于细颗粒物的吸湿增长,水分质量浓度及其占比均处于较低水平. PM2.5水分与二次离子及有机物均有很好的相关性,说明水分为气态污染物提供非均相转化载体,促进硝酸盐、硫酸盐、有机物的进一步生成.PM2.5水分与地壳物质无相关性,证实地壳元素为一次源,不受水分影响.  相似文献   

13.
北京混合功能区夏冬季细颗粒物组分特征及来源比较   总被引:1,自引:0,他引:1  
于2014年8月和12月,选择北京某城市混合功能区,分别手工采集一个月的环境空气PM2.5样品,实验室方法测定滤膜中的元素碳/有机碳、9种可溶性离子、16种无机元素等20余种化学组分,采用CMB模型对夏冬两季PM2.5来源进行分析.结果表明,夏季PM2.5日均质量浓度为73μg/m3,低于《环境空气质量标准》,而冬季平均值为111μg/m3,高于夏季和标准限值.冬季OC和EC浓度均高于夏季,且OC/EC比值升高,OC和EC呈线性相关,提示二者有相同来源.NO3-、SO42-、NH4+是北京混合功能区3种主要可溶性离子,且夏季生成量较高;冬季Cl-显著升高与燃煤排放有关.Si、Ti、Fe、Zn、Al等元素质量浓度在0.1~10μg/m3浓度水平,Pb、Cu、Mn、Cr、Ba、Sb等在10~102ng/m3浓度水平,V、Ni、Co、Mo、Cd等在0.1~10ng/m3浓度水平.且冬季各个元素浓度均高于夏季.CMB模型初步解析结果表明,夏季和冬季颗粒物的来源变化明显,夏季二次硫酸盐、机动车和二次硝酸盐贡献率居前三位,而冬季则为燃煤、机动车和扬尘.  相似文献   

14.
利用MODIS气溶胶光学厚度(AOD)数据针对不同土地覆盖类型的适用性,提出了一种基于土地覆盖类型的AOD融合方法,生成了一种新的3km AOD数据集.在此基础上,通过地理加权回归(GWR)模型估算了京津冀地区2016年PM2.5浓度,并用交叉验证的方法对模型性能进行评价.结果表明:利用融合后的AOD数据建立的模型可解释PM2.594.85%的浓度变化,交叉验证R2为0.94,RMSE为9.27μg/m3,MPE为6.72μg/m3,明显优于多元线性回归(MLR)模型;基于GWR模型估算的京津冀地区2016年年均PM2.5浓度为58.57μg/m3,其中冬季PM2.5浓度最高,春秋季次之,夏季浓度最低,PM2.5月均浓度变化范围32.78~140.83μg/m3,8月份浓度最低,12月份浓度最高;空间分布南北差异显著,衡水市PM2.5污染最为严重,张家口市PM2.5浓度较低.利用此方法成功弥补了PM2.5空间缺失,为城市尺度的健康效应和环境流行病学研究提供数据支持.  相似文献   

15.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

16.
利用2016年182d的MODIS 3km AOD数据与地面监测数据,评估了混合效应模型不同参数组合的模拟性能,得出模型在解释AOD-PM2.5关系时,对时间序列变异的解释能力要比空间差异更佳.在此基础上,利用混合效应模型建立京津冀地区每日的AOD-PM2.5关系,模型拟合R2为0.92,交叉验证调整R2为0.85,均方根误差(RMSE)为12.30 μg/m3,平均绝对误差(MAE)为9.73 μg/m3,说明模型拟合精度较高.基于此模型估算的2016年京津冀地区年均PM2.5浓度为42.98 μg/m3,暖季(4月1日~10月31日)为43.35 μg/m3,冷季(11月1日~3月31日)为38.52 μg/m3,与同时期的地面监测数据差值分别为0.59,0.7,5.29 μg/m3.空间上,京津冀地区的PM2.5浓度呈现南高北低的特征,有一条明显的西南-东北走向的高值区.研究结果表明,基于每日混合效应模型可以准确评估京津冀地区的地面PM2.5浓度,且模型估算的PM2.5浓度分布状况为区域大气污染防治提供了基础的数据支撑.  相似文献   

17.
基于2015~2019年广州4个不同国控站点类型的大气污染物监测数据,研究了广州各站点类型颗粒物(PM2.5)和臭氧(O3)的污染特征,并分析了O3污染季节和PM2.5污染季节PM2.5和O3的相关性及相互作用.结果表明:2015~2019年广州各站点类型PM2.5浓度总体呈下降趋势,O3浓度呈上升趋势.不同污染季节PM2.5与O3浓度均呈正相关.O3污染季节二次PM2.5的生成对颗粒物的影响显著大于一次PM2.5,随着光化学水平的升高,一次PM2.5的贡献浓度基本不变(均在21.03~31.37μg/m3范围内),贡献率逐渐下降;而二次PM2.5的贡献浓度逐渐升高(3.51~7.72 μg/m3升高到16.04~18.45μg/m3),贡献率也逐渐升高(11%~27%升高到34%~44%),且呈倍数增加.不同站点类型贡献差异明显,背景站点二次PM2.5的贡献最大,城区站点在中和高光化学水平下二次PM2.5的贡献最小;PM2.5污染季节各站点类型在不同PM2.5污染水平下O3浓度均具有差异性,总体上均呈现背景站点>郊区站点>城区站点的特点.气溶胶的消光作用和非均相反应均显著促进O3生成,随着PM2.5浓度升高,各站点类型的O3浓度峰值逐渐升高,由62.12~83.82μg/m3升高到92.49~135.4μg/m3;O3变化率峰值也逐渐升高,由8.42~10.02μg/(m3·h)升高到21.33~27.04μg/(m3·h).进一步促进了广州PM2.5和O3浓度的协同增长.  相似文献   

18.
基于静止卫星高分四号(GF-4)遥感数据,利用6SV辐射传输模型与暗目标算法进行高空间分辨率气溶胶光学厚度(AOD)遥感反演;在此基础上,结合地面监测站大气细颗粒物(PM2.5)浓度、气象资料等数据,采用物理订正方法及线性混合效应模型,实现长三角城市群区域大尺度空间连续的PM2.5浓度遥感反演;最后利用十折交叉验证法对反演精度进行验证.结果表明:GF-4反演的AOD结果分辨率较高,空间连续性好,与AERONET地基监测相关性R达到0.82;利用GF-4 AOD的PM2.5估算模型精度较高,模型估算PM2.5浓度与地面实测数据拟合度R2为0.74;在分春夏秋冬4个季节建模情景下,交叉验证R2依次为0.67,0.59,0.63和0.72,平均绝对误差MAE为10.40,7.42,10.10,13.34μg/m3,表明GF-4卫星适用于区域PM2.5浓度监测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号