首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 146 毫秒
1.
为研究本溪市大气PM2.5中水溶性离子污染特征,于2016年1—10月在本溪市开展PM2.5样品采集,使用离子色谱法分析了其中8种水溶性离子(Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+),并采用PMF(positive matrix factorization,正矩阵因子分解法)模型对水溶性离子的来源进行分析.结果表明:观测期间,本溪市ρ(PM2.5)平均值为(57.6±21.9)μg/m3,ρ(PM2.5)季节性变化特征明显,呈冬季 > 秋季 > 春季 > 夏季趋势;水溶性离子平均质量浓度为19.3 μg/m3,占ρ(PM2.5)的33.6%,各离子质量浓度高低顺序为SO42- > NO3- > NH4+ > Cl- > Ca2+ > K+ > Na+ > Mg2+;SNA(SO42-、NO3-和NH4+)是PM2.5中主要的3种离子,在春季、夏季、秋季和冬季分别占水溶性离子的73.2%、88.2%、82.5%和73.6%,表明夏季的二次污染较为严重.阴、阳离子电荷平衡分析结果显示,阴离子相对亏损,本溪市PM2.5整体呈弱碱性,NO3-、SO42-与NH4+相关性较高,其在PM2.5中主要以NH4NO3和NH4HSO4的形式存在. PMF分析结果表明,本溪市PM2.5中水溶性离子的来源主要包括二次转化源、燃煤源和扬尘源.研究显示,本溪市PM2.5中水溶性离子季节性变化特征明显,二次转化源、燃煤源和扬尘源是其主要来源.   相似文献   

2.
西宁市PM2.5水溶性无机离子特征及其来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨西宁市PM2.5水溶性无机离子的特征及其来源,于2017年1月-2018年4月在西宁市开展PM2.5样品采集工作,使用离子色谱仪分析水溶性无机离子.结果表明:西宁市大气中ρ(PM2.5)平均值为(42.7±36.6)μg/m3,4个采样点ρ(PM2.5)大小顺序依次为市区(54.9 μg/m3)>工业区(44.1 μg/m3)>郊区(40.8 μg/m3)>农村(28.3 μg/m3);ρ(PM2.5)季节性分布特征明显,呈冬季最高、夏季最低的特征.SNA(为SO42-、NO3-和NH4+的统称)是最主要的水溶性离子,占总水溶性离子的66.3%,SNA季节性分布特征为冬季最高、夏季最低.4个采样点SOR(硫氧化率)和NOR(氮氧化率)平均值均大于0.10,说明SO42-和NO3-主要来源于二次转化.采样期间PM2.5中ρ(NO3-)/ρ(SO42-)为0.72,表明燃煤源排放大于交通源排放.主成分分析显示,西宁市PM2.5水溶性离子来源主要为二次粒子源、工业源、扬尘源和燃烧源.研究显示,西宁市城区、工业区、郊区大气中ρ(PM2.5)平均值均超过GB 3095-2012《环境空气质量标准》一级标准限值,建议减少PM2.5的产生应以控制二次粒子源、工业源、燃烧源和扬尘源为主.   相似文献   

3.
为研究黄石市大气PM2.5中水溶性离子组成、质量浓度变化特征及来源,于2012年3月-2013年2月在湖北省黄石市利用MiniVol颗粒物采样器采集PM2.5样品,用离子色谱分析了9种水溶性离子(NH4+、Ca2+、Mg2+、Na+、K+、Cl-、NO3-、SO42-、F-)的质量浓度,并采用PMF(正定矩阵因子分析法)模型讨论了不同离子的来源.结果表明:观测期间黄石市大气PM2.5中ρ(总水溶性离子)的年均值为(61.5±26.8)μg/m3,占ρ(PM2.5)的63.9%,各离子质量浓度的高低顺序依次为ρ(SO42-)> ρ(NO3-)> ρ(NH4+)> ρ(Na+)> ρ(Cl-)> ρ(Ca2+)> ρ(K+)> ρ(F-)> ρ(Mg2+).二次无机离子SNA(为SO42-、NO3-和NH4+的统称)是水溶性离子的主要成分,占全部所测水溶性离子的74.4%.ρ(NO3-)/ρ(SO42-)范围为0.12~1.29,平均值为0.53±0.30,说明全年观测点附近主要以固定源污染为主.4个季节的SOR(硫氧化率)和NOR(氮氧化率)均大于0.10,说明黄石市PM2.5中的SO42-和NO3-主要是经二次转化形成的.阴、阳离子相关性研究发现,4个季节阴、阳离子总体相关性(R2为0.98)较好,并且全年PM2.5组分偏酸性.通过PMF模型源解析发现,黄石市大气PM2.5中水溶性离子主要来源于燃烧源、二次转化源和土壤/矿物扬尘源.研究显示,黄石市大气PM2.5中主要水溶性离子成分是SNA,燃烧、二次转化和土壤/矿物扬尘是其主要来源.   相似文献   

4.
菏泽市秋冬季PM2.5水溶性离子化学特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为深入研究菏泽市秋冬季PM2.5中水溶性离子污染特征,于2017年10月15日-2018年1月31日对菏泽市3个监测点同步进行PM2.5的采集和分析,分析探讨了不同污染程度下ρ(PM2.5)及水溶性离子化学特征.结果表明:①菏泽市秋冬季PM2.5呈区域污染特征.②整个观测期间,ρ(PM2.5)范围为26.72~284.10 μg/m3,平均值为103.27 μg/m3,其中水溶性离子对ρ(PM2.5)贡献率较大,为44.65%~49.87%;SNA(NO3-、NH4+、SO42-的统称)的占比较高,SNA占总水溶性离子质量浓度的86.88%,说明二次气溶胶为菏泽市大气PM2.5中的重要组成部分.③SNA三角图解和水溶性离子相关性结果表明,采样期间大气中NO3-、SO42-可能以NH4NO3、(NH42SO4形式存在;ρ(Cl-)与ρ(K+)相关性较高(清洁天和污染天的相关系数分别为0.79和0.81),由此推测Cl-与K+具有同源性,二者主要源于生物质燃烧.④重度及以上污染天的SOR(硫氧化率)和NOR(氮氧化率)分别为0.54和0.37,分别是清洁天的2.08和2.06倍;轻/中污染天的SOR和NOR分别为0.37和0.29,分别是清洁天的1.42和1.61倍.随着污染程度的加重,SO2和NO2向SO42-和NO3-的二次转化增强.重污染日SOR、NOR和相对湿度均大于清洁天和轻/中度污染天,而温度则未表现出相似的变化趋势,说明非均相反应是菏泽市秋冬季SO42-和NO3-形成的重要原因.研究显示,菏泽市污染呈区域性污染特征,二次气溶胶是菏泽市大气PM2.5的重要组成部分,污染天ρ(NO3-)、ρ(SO42-)、ρ(NH4+)均与相对湿度呈显著正相关(P < 0.05),均与温度呈负相关,表明在污染天高湿低温对SO2、NO2转化为SO42-、NO3-有推动作用.   相似文献   

5.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施.   相似文献   

6.
为了解春节期间烟花爆竹燃放对北京大气污染物和PM2.5中水溶性无机离子贡献的影响,采用浓度特征对比、相关性分析等方法,对2011年2月1日-3月1日期间的PM10、气态污染物、PM2.5中水溶性无机离子浓度等在线数据进行了分析.结果表明:烟花爆竹的燃放会在短时间内加重PM10颗粒物污染,集中燃放期(含除夕、春节、正月初五、元宵节)ρ(PM10)和φ(SO2)(分别为232μg/m3和40.2×10-9)是非集中燃放期(63μg/m3和16.0×10-9)的3.7和2.5倍,燃放烟花爆竹对ρ(PM10)和φ(SO2)的小时贡献率分别达到56.8%和35.6%;但对φ(CO)、φ(NO)、φ(NO2)无显著影响.而观测期间由其他因素导致的污染期ρ(PM10)和各气态污染物小时体积分数有所增加,分别是非集中燃放期的3.0~8.3倍.燃放烟花爆竹对PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)的影响最大,分别为非集中燃放期的65.0、31.6、6.9倍,贡献率分别为88.6%、87.2%、65.8%. ρ(Mg2+)、ρ(K+)与ρ(Cl-)在集中燃放期表现出较高的相关性(R>0.9).污染期ρ(SO42-)、ρ(NO3-)、ρ(NH4+)明显升高,分别为非集中燃放期的3.8、16.4、8.3倍,同时高于集中燃放期(分别为2.7、2.5、2.1倍).集中燃放期PM2.5中主要以NH4HSO4、NH4NO3、KNO3、KCl、NH4Cl、MgCl2等形式存在.集中燃放期硫氧化物转化率(SOR)高于非集中燃放期和污染期,而氮氧化物转化率(NOR)则是污染期最高.研究显示,燃放烟花爆竹对ρ(PM10)及PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)影响最大,污染期各离子浓度均有大幅升高,NOR在污染期的高值是导致ρ(NO3-)升高的重要原因.   相似文献   

7.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

8.
为研究聊城市冬季PM2.5污染特征,于2016年1月7-29日在聊城市区对PM2.5样品进行了采集,并对其水溶性离子(包括F-、Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示:观测期间聊城市ρ(PM2.5)平均值为(192.4±88.9)μg/m3,超过GB 3095-2012《环境空气质量标准》日均二级标准限值的1.6倍.水溶性离子质量浓度为(77.4±46.9)μg/m3,占ρ(PM2.5)的40.2%,其中SNA(NO3-、SO42-和NH4+)为主要离子,占水溶性离子比例达82.5%.轻度、中度、重度及严重污染时PM2.5中水溶性离子质量浓度分别为(32.49±3.67)(46.26±17.66)(77.11±11.64)和(139.21±51.71)μg/m3,SNA分别占ρ(PM2.5)的24.4%、26.7%、30.4%和39.0%,随着污染程度加重,SNA比例升高.观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.18和0.20,随着ρ(PM2.5)升高,SOR及NOR明显上升,表明冬季PM2.5污染越严重时SO2与NO2的转化速率越强,二次无机污染严重.主成分分析结果表明,二次转化、扬尘源及工业生产为水溶性离子的主要来源.后向气流轨迹结果显示,观测期间污染气团主要来源于西北方向,受内蒙古及河北城市影响较大,但当污染气团来源于周边城市且天气静稳时,颗粒物浓度最高.研究显示,聊城市冬季PM2.5污染较为严重.   相似文献   

9.
合肥市郊夏季PM10浓度及其与能见度的关系   总被引:3,自引:0,他引:3  
年8—9月在合肥市郊对ρ(PM10)进行了观测,并分析了其中9种水溶性离子(NO2-、Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)质量浓度. 结果表明:采样期间该地区ρ(PM10)日均值为78.9 μg/m3,9种水溶性离子的平均质量浓度为18.93 μg/m3,占ρ(PM10)的26.6%,表明水溶性组分是PM10的重要组成之一. SO42-、NO3-、NH4+和Ca2+是主要的阴、阳离子,日均质量浓度分别为8.14、4.81、3.46和1.33 μg/m3. 不同RH(相对湿度)下PM10对能见度的影响不同,RH小于80%时,二者呈显著的线性负相关〔R(相关系数)为-0.80〕;RH大于80%时,二者呈指数负相关(R为-0.48). 离子间相关性分析显示,PM10中水溶性离子的主要结合方式为(NH4)2SO4、NH4HSO4、NH4NO3、KCl及K2SO4. 采样期间ρ(NO3-)/ρ(SO42-)平均值为0.59,说明在该地区固定源对水溶性组分的贡献大于移动源. 另外,扬尘也是PM10重要来源之一.   相似文献   

10.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%. 当污染加重,水溶性离子质量浓度随ρ(PM2.5)增大而升高,且NO3-、NH4+及SO42-占比亦逐渐升高,但其他离子占比随之下降,Ca2+尤为明显,表明ρ(PM2.5)升高时主要受二次无机转化影响;观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.36和0.25,表明秋季SO2与NO2转化速率较强,二次无机污染严重,另外SOR及NOR与温度及相对湿度呈正相关,且SOR对二者更为敏感;邢台市秋季PM2.5呈弱碱性,NH4+主要以(NH42SO4和NH4NO3的形式存在;ρ(NO3-)/ρ(SO42-)平均值为2.13,表明移动源对秋季大气颗粒物的来源贡献较大;PMF分析结果表明,二次转化源、燃烧源及扬尘源为邢台市秋季PM2.5中水溶性离子的主要来源.  相似文献   

11.
利用高时间分辨率MARGA于2017年2月17日~3月24日在桂林市开展PM2.5组分监测,结合同一点位环境和气象监测数据,分析桂林市大气PM2.5水溶性无机离子组分特征及气溶胶酸性.结果表明:MARGA监测的PM2.5中8种水溶性离子与PM2.5变化趋势一致.8种水溶性离子总浓度均值29.27μg/m3,3种二次水溶性离子SO42-、NO3-和NH4+浓度均值26.91μg/m3,占水溶性离子总浓度的93.50%,是桂林市大气PM2.5的主要组分.二次水溶性离子SO42-、NH4+和NO3-两两之间存在显著正相关性(相关系数均>0.80),提示二次离子产生的机制及在大气中的演化、沉积具有一定的相似性.无论有无降雨,能见度(Vis)均随着水溶性离子,尤其是二次水溶性离子浓度的增加呈幂函数规律递减.24h累计降雨量≥ 10.0mm时,湿清除作用明显.晴天及降雨量不大的天气下,需注意管控机动车尾气、生物质燃烧和扬尘污染.SOR、NOR分别为0.35、0.12,SO2同时通过均相和非均相氧化反应转化为SO42-,NOx主要是通过白天光化学反应转化为NO3-.大多数离子和气态前体物均存在明显的日变化规律,这与物质的来源、形成机制和气象条件不同有关.CE/AE摩尔浓度均值为1.5,桂林市PM2.5总体偏碱性.PM2.5中SO42-、NO3-、Cl-主要以(NH42SO4、NH4NO3和NH4Cl形式存在.PM2.5中NH4+可能与监测点位交通源排放有关,桂林市应加强交通污染物排放管控.  相似文献   

12.
使用MARGA离子在线分析仪ADI 2080对2017年12月27日~2018年1月5日南京市PM2.5化学组分进行连续采样分析,结合气象要素和大气环境监测数据,探讨了霾污染过程中水溶性离子的时间分布特征及其来源特征.结果表明:霾日中南京水溶性离子浓度为121.41μg/m3,是洁净日的3.2倍.霾污染过程中水溶性离子平均浓度大小顺序为NO3- > SO42- > NH4+ > Cl- > K+ > Ca2+ > Mg2+,SNA离子占总水溶性离子浓度的91.97%.霾日中水溶性离子日变化均为三峰型,洁净日中Cl-、SO42-和NH4+的日变化为单峰型,Ca2+为双峰型,K+、Mg2+为三峰型.随着空气污染状况的加重,总水溶性离子在PM2.5中的占比不断减少,空气质量为优时占比95.93%,严重污染时为63.25%.霾日中随着污染加重,NH4+占总离子的比例稳定在23%左右,SO42-占比缓慢减小,NO3-占比不断增大.NOR、SOR的日变化在霾日呈双峰型分布,洁净日则较为平稳.观测期间的水溶性离子主要来源有二次转化、煤烟尘、扬尘以及生物质燃烧.  相似文献   

13.
为探讨东北亚冬季PM2.5水溶性离子空间分布特征及来源,测定了2017~2018年沈阳冬季PM2.5水溶性离子浓度.结果显示:沈阳冬季PM2.5水溶性离子平均质量浓度为28.5±11.9μg/m3,二次离子(SO42-、NO3-和NH4+)的浓度最高,分别占总水溶性离子质量浓度的31.0%、22.4%和19.2%.运用离子化学计量学关系、相关性和主成分分析,探讨了沈阳冬季PM2.5水溶性离子的可能来源.并整合了东北亚冬季(中国东北、韩国、日本)近20a来PM2.5水溶性离子数据,发现沿着东亚冬季风,东北亚冬季PM2.5水溶性离子浓度从中国东北,经韩国海岸、韩国和济州岛,日本海岸至日本整体呈下降趋势,在韩国和日本出现局部上升,且在不同区域,不同水溶性离子占比明显不同.其中,韩国冬季PM2.5中SO42-、Ca2+和K+受外来源影响显著,NO3-和NH4+主要来自本地源,Cl-、Na+和Mg2+主要来自本地源或海源;日本中部冬季PM2.5中SO42-、NO3-、NH4+和K+主要来自本地源,Cl-、Ca2+、Na+和Mg2+主要来自本地源或海源.  相似文献   

14.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

15.
通过实时在线监测了2018年11月27日~2019年1月15日北京市城区PM2.5、水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO2-、NO3-、SO42-、PO43-)、碳质组分(有机碳OC、元素碳EC)的质量浓度以及气态污染物浓度和气象要素,收集整理了近20年北京市冬季PM2.5、主要离子组分以及碳质组分浓度,分析研究了1999~2018年北京市冬季PM2.5、离子、碳质组分的变化特征,重点探讨了监测期间清洁日与两个典型重污染事件PM2.5及其组分的演变特征.结果表明:研究期间PM2.5浓度为53.5μg/m3,达到近20年北京市冬季较低值,且大气主要污染源由煤烟型污染源转变为燃煤型与机动车尾气复合型污染源.监测期间,湿度高、微弱的西南风导致重污染产生,清洁日、污染事件I与污染事件II PM2.5平均浓度分别为32.5,138.9,146.8μg/m3且不同时段PM2.5日变化趋势存在差异.各离子浓度变化为:NO3- > NH4+ > SO42- > Cl- > K+ > Ca2+ > Na+ > PO43- > F- > NO2-~Mg2+,总水溶性离子浓度为24.6μg/m3占PM2.5总浓度的46.0%,其中SNA浓度占总离子浓度的83.7%,是离子中最主要的组分.碳质组分浓度达到近二十年北京市冬季最低值,变化为:一次有机碳POC > EC > 二次有机碳SOC,OC与EC相关系数达到0.99,一次燃烧源对污染过程有较大贡献.NH4+在清洁日与污染II中富集,主要以(NH42SO4、NH4NO3和NH4Cl形式存在,在污染I中较少,仅以(NH42SO4和NH4NO3存在.在污染I和II期间,SO42-的形成昼夜均受相对湿度与NH3影响;NO3-的形成白天受O3与NH3的影响,夜间受相对湿度和NH3的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号