首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
微生物在城市生活垃圾堆肥中起着重要的作用 ,而某些微生物在一定条件下产生的生物表面活性剂有望改善堆肥的微环境 ,提高堆肥的效率。从不同温度的堆肥过程中 (45℃和 55℃ )筛选产生物表面活性剂的细菌 ,生物表面活性剂的产生通过测定其发酵液的张力值来判断。实验结果表明 ,堆肥过程中的确存在产生物表面活性剂的细菌 ,枯草芽孢杆菌是其主要菌之一。实验通过一系列培养条件的优化 ,使所筛选到的细菌产生活性较强、浓度较高的生物表面活性剂  相似文献   

2.
从农业堆肥样品中提取出4株可将发酵液的表面张力降到40mN/m以下的菌株,对该四株菌的发酵液进行薄层层析(TLC)分析,结果表明其中3株产生的生物表面活性剂可能为脂肽。选取其中一株B2对其所产的生物表面活性物质进行提纯,经过红外光谱(FT-IR)分析,证明该产物为一环脂肽类似物。该脂肽纯品可将纯水的表面张力由72.3mN/m降到29.9mN/m,CMC值为0.139g/L。实验结果表明,堆肥过程中存在能够产生生物表面活性剂脂肽的菌种,且具有良好的表面活性。  相似文献   

3.
结合油平板和血平板方法从重金属8处复合污染的土壤样品中筛选出15株能产生物表面活性剂的细菌菌株,其中J119菌株不仅具有良好的产生物表面活性剂的性能,而且能在含铅、镉浓度分别为100~200 mg·L-1、25~100 mg·L-1的平板中生长.同时对J119菌株所产的生物表面活性剂与3种不同类型化学合成表面活性剂活化土壤中铅的效能进行了比较.结果表明,在400 mg·kg-1铅污染土壤中,J119菌株发酵液与化学合成表面活性剂活化土壤中铅的效果相当;与对照相比,在800 mg·kg-1铅污染土壤中,J119菌株发酵液处理使土壤中有效性铅的浓度增加51.1%,而3种化学合成表面活性剂CTAB、SDS、Tween-80处理土壤中有效态铅浓度仅比对照增加28.7%、26.2%和16.0%.另外,J119菌株产生的生物表面活性剂与供试3种化学合成表面活性剂对土壤中铅的活化作用之间存在显著差异.  相似文献   

4.
生物表面活性剂产生菌的筛选及培养条件优化   总被引:1,自引:0,他引:1  
采用富集培养、蓝色凝胶平板筛选和发酵液排油活性测定的方法,从沈阳蜡化厂活性污泥中分离筛选到一株产表面活性剂菌株,并通过摇瓶发酵实验对该菌株产表面活性剂的培养条件进行了优化.结果表明:该菌株产表面活性剂的最佳碳源为废油,氮源为尿素,初始pH值为7.0,接种量为5%,培养温度为35℃,培养72 h后发酵液排油圈直径可达6....  相似文献   

5.
生物表面活性剂产生菌的筛选及产剂性能研究   总被引:4,自引:0,他引:4  
从长期被汽油污染的土壤中,筛选出了一株表面活性剂产生菌BSZ-07,初步确定其为铜绿假单胞菌。通过正交试验,优化出了BSZ-07的最优产剂条件。BSZ-07在48h内可使发酵液的表面张力降至34.2mN/m,且乳化性能稳定,是一种较优良的生物表面活性剂产生菌。经FTIR分析及元素分析,初步确定其所产表面活性剂为鼠李糖脂。  相似文献   

6.
脂肽类生物表面活性剂产生菌的分离及特性研究   总被引:3,自引:0,他引:3  
曹娟  刘怡辰  张振华  冉炜  沈标 《环境科学学报》2009,29(10):2056-2062
从石油污染土壤中分离筛选获得一株产生生物表面活性剂菌株Y8A,经生理生化实验、16S rDNA序列分析等将其鉴定为芽孢杆菌属(Bacillus sp.).Y8A能在22h内将发酵液的表面张力从68.3mN·m-1降到23.5 mN·m-1.经TLC和傅立叶红外光谱分析, 菌株Y8A产生的生物表面活性剂为脂肽类.20mg·L-1 Ca2+和Fe2+能显著促进其生长和表面活性剂的产生;菌株Y8A在20~30℃,pH 5~12范围内产生表面活性剂的能力较强;LB培养基中添加1%乳糖对生长的影响不大,但能够明显促进Y8A产生生物表面活性剂,而葡萄糖、蔗糖抑制表面活性剂的产生.Y8A能够促进石油降解菌Y1D和F11对石油的降解和功夫菊酯降解菌ZZH对功夫菊酯的生物降解.  相似文献   

7.
杨乐 《环境工程》2015,33(6):153-157
以原油为唯一碳源和能源,从新疆克拉玛依油田土壤中筛选出1株能产生物表面活性剂的高效解烃菌XJBM,经形态观察、生理生化特征和Biolog分析,初步鉴定该菌为铜绿假单胞菌(Pseudomonas Aeruginosa)。薄层色谱分析结果表明,XJBM产糖脂类生物表面活性剂,在最适发酵条件下,生物表面活性剂的产量可达2.25 g/L,可将发酵液表面张力从68.20 m N/m降低到32.50 m N/m,乳化指数(E24)达到81.8%。采用单因素试验对影响XJBM降解率的因素进行了研究,得出最适降解条件为p H 7.5,温度30℃,盐浓度5 g/L,接种量10%。在此条件下,菌株对1%石油烃的7d降解率为63.78%。  相似文献   

8.
采用批次淋洗的方法研究了红球菌SY095产生物表面活性剂对沉积物中Pb和Cu的去除作用,考察了生物表面活性剂浓度、pH、温度、振荡时间、提取次数等条件对重金属去除效果的影响,并分析处理前后重金属的形态变化。结果表明:随着生物表面活性剂浓度的增加,2种重金属的去除率增大;Pb在淋洗剂pH为6时解吸效果最好,达到34.16%,而Cu的去除效果随着pH的升高而增加;生物表面活性剂对沉积物Pb和Cu去除率分别在25,40℃时达到最大;随着振荡时间和提取次数的增加,Pb和Cu去除率升高,3次洗脱后累积去除率分别为39.12%和51.26%;对沉积物重金属的形态分析发现,生物表面活性剂可有效去除酸提取态Pb和Cu。  相似文献   

9.
产表面活性剂的石油降解菌降解特性研究   总被引:7,自引:0,他引:7  
从石油化工厂附近的污染土壤中分离到一株产表面活性剂的石油降解菌,经鉴定为假单胞菌属,其生物表面活性剂的产量为0.53g/L。文章研究了该菌株在不同条件下的生长状况,并与两株不产表面活性剂的菌对比测定了其石油降解的效率,生物表面活性剂在此过程中起了重要作用。将表面活性剂产生菌与其它菌株组合能有效的提高菌株对石油的降解效率,最终使另外两种菌株的降解率分别提高了7.38%和18.33%。  相似文献   

10.
阴离子表面活性剂是环境中分布广泛且具有代表性的一类有机污染物。采用分置式膜生物反应器(MBR)进行去除模拟废水中阴离子表面活性剂(LSS)的实验.结果表明:MBR对阴离子表面活性剂的去除率高于90%。同时考察了阴离子表面活性剂生物降解的影响因素,确定其适宜降解蒂件为:气体流量为0.3m^3/h、活性污泥浓度为6948mg/L。初步探计了降解动力学和降解机理,研究表明对阴离子表面活性剂的去除符合拟一级反应动力学过程,且生物降解对其去除起主要作用。  相似文献   

11.
Soil contaminated with heavy metals cadmium(Cd)and lead(Pb)is hard to be remediated.Phytoremediation may be a feasible method to remove toxic metals from soil,but there are few suitable plants which can hyperaccumulate metals.In this study,Cd and Pb accumulation by four plants including sunflower(Helianthus annuus L.),mustard(Brassica juncea L.),alfalfa(Medicago sativa L.), ricinus(Ricinus communis L.)in hydroponic cultures was compared.Results showed that these plants could phytocxtract heavy metals, the ability of accumulation differed with species,concentrations and categories of heavy metals.Values of BCF(bioconcentration factor)and TF(translocation factor)indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals.Changes on the biomass of plants,pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures.Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals,such as pH and Eh regulations,and so forth.  相似文献   

12.
The oxidation of As(Ⅲ) with potassium permanganate was studied under conditions including pH, initial As(Ⅲ) concentration and dosage of Mn(Ⅶ). The results have shown that potassium permanganate was an effective agent for oxidizing of As(Ⅲ) in a wide pH range. The pH value of tested water was not a significant factor affecting the oxidation of As(Ⅲ) by Mn(Ⅶ). Although theoretical redox analyses suggest that Mn(Ⅶ) should have better performance in oxidization of As(Ⅲ) within lower pH ranges, the experimental results show that the oxidation efficiencies of As(Ⅲ) under basic and acidic conditions were similar, which may be due to the adsorption of As(Ⅲ) on the Mn(OH)2 and MnO2 resulting from the oxidation of As(Ⅲ).  相似文献   

13.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

16.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

17.
The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (∑CBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ∑ CBs in waterweeds ranged from 13.53×102 μg/g to 38.27×102μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs(DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County < Yunan County <Yun'an County < Gaoyao County according to the ∑CBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River.  相似文献   

18.
Degradation of 2,4-dichlorophenol(2,4-DCP)was studied in a novel three-electrode photoelectrocatalytic(PEC)integrative oxidation process,and the factors influencing the degradation rate,such as applied current,flow speed of O_2,pH,adscititious voltage and initial 2,4-DCP concentration were investigated and optimized.H_2O_2 was produced nearby cathode and Fe~(2 )continuously generated from Fe anode in solution when current and O_2 were applied,so,main reactions,H_2O_2-assisted TiO_2 PEC oxidation and E-Fenton reaction,occurred during degradation of 2,4-DCP in this integrative system.The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process,while it was only 31% in E-Fenton process and 46% in H_2O_2-assisted TiO_2 PEC process.So,it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect.By the investigation of pH,it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.  相似文献   

19.
The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied.Serial concentrations of the pesticides with the addition of copper ion were spiked in the soil and incubated for a regular period of time,the analysis of the extracts from the soil was carried out using gas chromatography (GC).The photodegradation of pyrethroids in water system was conducted under UV irradiation.The effect of Cu~(2 ) on the pesticides degradation was measured with half life (t_(0.5)) of degradation.It was found that a negative correlation between the degradation of the pyrethroid pesticides in soil and Cu addition was observed.But Cu~(2 ) could accelerate photodegradation of the pyrethroids in water.The t_(0.5) for cyhalothrin extended from 6.7 to 6.8 d while for cypermethrin extended from 8.1 to 10.9 d with the presence of copper ion in soil.As for photodegradation,t_(0.5) for cyhalothrin reduced from 173.3 to 115.5 rain and for cypermethrin from 115.5 to 99.0 min.The results suggested that copper influenced the degradation of the pesticides in soil by affecting the activity of microorganisms.However, it had catalyst tendency for photodegradation in water system.The difference for the degradation efficiency of pyrethroid isomers in soil was also observed.Copper could obviously accelerate the degradation of some special isomers.  相似文献   

20.
以三峡大学的校园河道求索溪为研究对象,利用综合水质标识指数法确定求索溪水质类别,分析其水质时空变化规律,并利用对应分析法得出求索溪中不同监测点的主要污染因子.研究结果表明:求索溪整体的综合水质标识指数为7.423,整体水质为劣V类(地表水环境质量标准GB 3838-2002)且黑臭.从时间变化来看,求索溪4月份的水质最差,5月份次之,4、5月份所有监测点的水质都劣于V类且黑臭;8月份水质最好,水质为Ⅳ类;从空间分布来看,8个监测点综合水质标识指数均超过6.0,水质为劣V类,其中6号监测点的水质相对最好,监测点3号的水质相对最差;对应分析法得出求索溪的整体水体污染程度受总氮因子的影响最大,其次为总磷.该研究拟为求索溪及类似校园河道的水环境治理研究提供基础依据和参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号