首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
选用无机环保型缓蚀剂四硼酸钠,研究了质量浓度不同的四硼酸钠对AZ91D镁合金的缓蚀效果,并采用电子显微镜对空白样品及添加缓蚀剂浸泡样品的腐蚀形貌进行了分析。结果表明,在室温下,四硼酸钠对AZ91D镁合金具有缓蚀效果,四硼酸钠溶液质量浓度为2. 4 g/L时的缓蚀效率可达到66. 46%;浸泡腐蚀与电化学腐蚀结果一致。  相似文献   

2.
沿海地区输电铁塔防护涂层耐腐蚀性能研究   总被引:3,自引:2,他引:1  
目的研究沿海地区输电铁塔防护涂层体系的腐蚀失效行为,评估涂层的防护性能,为铁塔防护涂层寿命体系评定和修复提供试验依据。方法分别采用热镀锌、热镀锌/冷涂锌复合涂层、热镀锌/带锈环氧涂层三种技术方案,对铁塔角钢材料进行防腐保护,采用中性盐雾方法模拟沿海环境对试样进行耐蚀性测试,通过试样表面形貌观察、极化曲线、以及阻抗谱等电化学手段对保护效果进行评价。结果热镀锌、热镀锌/冷涂锌复合涂层在盐雾150 h出现大面积腐蚀,热镀锌/带锈环氧涂层在盐雾2000 h未发生明显腐蚀。结论热镀锌/带锈环氧涂层的耐蚀性能优于热镀锌/冷涂锌漆和热镀锌涂层。  相似文献   

3.
在污染大气环境中NaCl对镁合金的协同作用   总被引:2,自引:1,他引:2  
研究了沉积NaC l的AZ91D镁合金在含有SO2和CO2的模拟污染大气环境中初期腐蚀行为。研究了在SO2和CO2协同作用下,表面沉积NaC l的AZ91D镁合金大气初期腐蚀规律。采用扫描电子显微镜(SEM)观察表面腐蚀形貌,XRD进行腐蚀产物分析。结果表明,由于NaC l的沉积加速了AZ91D镁合金的初期大气腐蚀,SO2、CO2和NaC l多种因素协同作用对AZ91D镁合金的初期大气腐蚀的影响远大于单一SO2、CO2和NaC l因素。  相似文献   

4.
目的研究浸泡时间对两种涂层电化学腐蚀行为的影响。方法在质量分数为3.5%的Na Cl溶液中通入饱和CO_2气体,采用电化学方法、SEM形貌检测方法测量两种涂层在该溶液中不同浸泡时间下的动电位扫描极化曲线和表面形貌,对比分析两种涂层的电化学特征和防蚀性能。结果随着涂层浸泡时间的延长,自腐蚀电位E_(corr)逐渐降低,而电流密度逐渐增大;在浸泡时间相同的情况下,涂层A的自腐蚀电位E_(corr)比涂层B高,而电流密度比涂层B低,说明涂层A的耐蚀性能明显优于涂层B。结论涂层短时间浸泡(≤72 h)时,电化学阻抗谱为吸氧过程的单容抗弧,长时间浸泡(≥120 h)时则为析氢过程的2个容抗弧,其耐蚀性下降。  相似文献   

5.
采用扫描电镜(SEM/EDX)、失重法、交流阻抗谱和局部交流阻抗研究了纯铝1060在0.004mol/L Na2SO4 (pH=3.1)溶液中的腐蚀行为和规律。研究结果表明,纯铝1060在模拟溶液中连续浸泡720h后,材料质量损失与浸泡时间的关系符合指数规律即C=A·tn;腐蚀产物形貌为不规则的团状或块状,分析表明腐蚀产物为氢氧化铝和硫酸铝水合物;交流阻抗结果显示纯铝1060腐蚀速率随浸泡时间的延长逐渐降低;局部交流阻抗图谱显示材料表面局部阻抗随时间而变化,并形成点蚀。  相似文献   

6.
目的针对车辆装备长期在高盐雾、高湿热、高日照等恶劣的气候环境下使用,会受到腐蚀影响的现状,探究现役军用有机涂层防护性能。方法采用电化学阻抗谱技术研究军绿有机涂层和金属漆涂层在3.5%NaCl溶液中的腐蚀电化学行为,分析这两种涂层在浸泡期间的电化学阻抗谱特征,通过拟合等效电路得到涂层电阻R_c和涂层电容C_c,并用这两个电化学参数评价军绿有机涂层和金属漆涂层的耐蚀性能。结果军绿有机涂层抗腐蚀介质渗透能力很强,而金属漆涂层抗腐蚀介质渗透能力稍弱。结论两种涂层都表现出很好的防护性能,且金属漆涂层在腐蚀后期的防护性能要优于军绿有机涂层。  相似文献   

7.
目的研究环氧涂层在不同温度海水环境中的腐蚀失效行为。方法采用电化学阻抗谱(EIS)技术研究两种海水环境中涂层的EIS特征,同时分析涂层电阻和涂层电容的变化,以研究环氧涂层防护性能随浸泡时间的变化。结果涂层在15℃海水中浸泡1440 h时,阻抗值下降至106?·cm2以下,而在30℃海水中仅浸泡72h时,阻抗值就已下降至106?·cm2。随着浸泡时间的增加,涂层在15℃海水中的EIS响应由高阻抗的单容抗弧变为双容抗弧,而在30℃的海水中,EIS响应首先由单容抗弧演变为双容抗弧,随后又出现了明显的Warburg扩散阻抗特征。涂层电容在两种温度的海水中均呈上升趋势,电阻呈下降趋势。结论涂层在30℃海水中的劣化速度加快,是因为升高温度能够降低涂层与金属间的结合力,加快了海水向涂层内部渗透的速率。由于温度的升高加快了溶解氧的扩散速率,使得氧扩散过程成为腐蚀反应的控制步骤,从而导致了涂层在30℃海水中的EIS响应出现了明显的Warburg扩散阻抗特征。当环氧涂层在15℃与30℃的海水中浸泡1800 h时,其防护性能的变化可以分为快速下降、缓慢下降、趋于稳定三个阶段。  相似文献   

8.
模拟酸雨大气环境中Cl-浓度对镀锌钢腐蚀行为的影响   总被引:2,自引:1,他引:1  
目的研究模拟酸雨环境中Cl-浓度对镀锌钢腐蚀行为的影响与作用机理。方法以p H为3.05的模拟酸雨溶液作为空白溶液,在每升空白溶液中分别加入0.01,0.1和0.5 mol的Na Cl,浸泡3天和7天后取出试样,进行形貌、成分分析以及电化学分析。结果浸泡后镀锌钢表面形成的腐蚀产物主要为Na Zn4SO4Cl(OH)6·6H2O。随着溶液中Cl-浓度的增加,镀锌钢的腐蚀电位逐渐减小,腐蚀电流密度逐渐增大,阻抗值逐渐减小。结论通过不同时间的浸泡,随着溶液中Cl-浓度的增加,镀锌钢表面腐蚀产物对基体都有一定的保护作用,但保护作用逐渐减小,尤其在浸泡3天时的变化最明显。  相似文献   

9.
姜洁  许甜  刘婧  杨超  崔淦 《装备环境工程》2021,18(7):99-106
目的 揭示碱性环境下交流干扰对富锌环氧涂层失效机制的影响.方法 以富锌环氧涂层为研究对象,以X80钢为基体,手工涂敷形成带涂层的X80钢样品,通过五点测试法确定涂层厚度为(25±5)μm,施加交流干扰电压.通过电化学测试,研究涂层样品在3%(质量分数)NaOH溶液中随浸泡时间的电化学阻抗变化特征,揭示交流电对富锌环氧涂层的作用机制.结果 在碱性环境下,锌粉更有利于活化,但是反应速率也更快,导致活化的锌粉表面能够迅速形成腐蚀产物Zn(OH)2和Zn(OH)42-,阻止锌粉之间的电连接,同时基体Fe在碱性环境中容易发生钝化,极大地减弱了涂层与金属基体的湿结合力.当交流干扰存在时,活化锌粉的反应过程非常迅速,以至于不能形成有效的电连接和阴极保护.结论 交流干扰能够抑制锌颗粒的活化过程(ZnO→Zn(OH)2/Zn(OH)42-),促进活化锌颗粒的反应过程,削弱锌的阴极保护作用.  相似文献   

10.
镁合金在模拟污染气体环境中的初期腐蚀规律   总被引:1,自引:2,他引:1  
研究了在含有SO2和CO2的模拟污染大气环境中AZ91D镁合金大气腐蚀初期行为,讨论了在SO2和CO2协同作用下AZ91D镁合金大气初期腐蚀规律。采用扫描电子显微镜(SEM)观察表面腐蚀形貌,XRD进行腐蚀产物分析。结果表明由于SO2和CO2的溶解导致电解液膜酸性增加,进一步加大了表面的反应活性.加速了大气初期腐蚀。  相似文献   

11.
A new magnesium alloy anode is based on an environmentally friendly electrode that contains none of mercury, lead and chromate, but it can enhance the electric properties of alloy significantly. Magnesium alloy adding eco-friendly elements Zn-In-Sn which was developed by orthogonal design were obtained by two casting methods. The effect of additive elements on performance of electrode material was studied. The effects of elements addition and casting method on electric properties and corrosive properties of Mg-Zn-In-Sn alloys were investigated by using electrochemical measurements, corrosive tests and observation of surface structure. The results show that Mg-Zn-In-Sn alloy anode has higher electromotive force and more stable work potential than that commercial magnesium alloy AZ91. It is suitable for anode material of magnesium battery for its small hydrogen evolution, less self-corrosion rate and easy to shed corrosive offspring off.  相似文献   

12.
目的评价服役于高原大气环境中的直升机蒙皮典型结构及其防护体系的防护性能。方法通过模拟高原大气环境加速试验方法再现直升机蒙皮典型结构防护体系实际服役过程中出现的损伤,利用扫描电镜对表面微观形貌进行观察,采用电化学阻抗谱测试研究有机涂层阻抗的变化。结果在实验室加速试验中,蒙皮试验件螺钉周边先出现局部腐蚀,之后腐蚀产物又逐渐减少,而铆钉周边经过多个周期后腐蚀产物都没有显著增多。螺钉中间区域有机涂层电化学阻抗模值直至第8个周期后与原始情况相比才大幅度下降,而铆钉中间区域有机涂层电化学阻抗模值在试验中多次明显下降。结论铆钉周边的有机涂层经过多个周期加速试验仍具有阻挡腐蚀性介质的作用。与螺钉结构的情况相比,铆钉中间区域有机涂层防护性能退化显著。  相似文献   

13.
目的评价纳米涂层/铝合金在不同pH值海水溶液中的腐蚀行为。方法通过测试纳米涂层/铝合金试样在不同pH值海水溶液中的EIS值,分析试样阻抗谱图及Bode谱图的演化规律,建立不同EIS图谱的不同电极阻抗模型,并采用ZView软件解析涂层体系不同时期的电化学阻抗谱,获得涂层电阻的变化趋势,及不同pH值海水浸泡的纳米涂层体系腐蚀失效速度。结果随着浸泡时间的增加及pH值的降低,纳米涂层/铝合金体系腐蚀损伤失效速率在浸泡前期整体趋势增大,但中后期由于腐蚀产物逐渐堵塞了涂层的微孔,腐蚀介质向铝合金表面渗透的速率逐渐减小。结论 pH为2.0海水浸泡下的3涂层失效最快,其次是pH为4.0海水浸泡下的2涂层,最后为p H为6.0海水浸泡下的1涂层,该涂层体系应采用等效电路模型C进行拟合。  相似文献   

14.
2024-T62铝合金涂层外场腐蚀环境下电化学性能研究   总被引:9,自引:8,他引:1  
目的评估自然暴露条件下涂层的耐蚀性能。方法选取西沙热带海洋环境作为自然暴晒场,开展2024-T62铝合金涂层(N1和N2)在湿热暴露、紫外照射、盐雾等综合腐蚀环境下的外场暴晒试验,利用电化学测试方法对暴晒后涂层在3.5%Na Cl溶液中浸泡不同时间的耐蚀性能进行研究。结果铝合金涂层外场暴晒试验后,电化学阻抗值下降,综合腐蚀环境具有显明的加速作用。随着在3.5%Na Cl溶液的浸泡时间增加,C_(coat)-T值不断增大,Rcoat值不断减小。结论 N1铝合金涂层暴晒件电化学阻抗值较高,具有较强的耐蚀性能。  相似文献   

15.
阴极极化对人为破损907A涂层钢腐蚀行为的影响   总被引:3,自引:2,他引:1  
采用改性厚浆环氧防锈漆作为涂层材料,研究了不同破损率的涂层对907A钢腐蚀特性及阴极保护效果的影响,测定了不同涂层破损率的907A钢在天然海水中的电化学阻抗谱和极化电流。结果表明,随着浸泡时间的延长,在自腐蚀电位下,2种试样基体的腐蚀程度都不断地加剧。在-0.85 V(vs.SCE)极化电位下,破损率为1%的试样,阴极极化对破损处涂层的破坏作用大于对钢基体的保护作用,未达到预期保护效果;对于破损率为5%的试样,由于涂层缺陷处基体上形成较厚的钙镁沉积层从而减缓了金属腐蚀。  相似文献   

16.
目的研究西沙海洋环境下30CrMnSiA合金钢三种(C1,C2,C3)涂层体系的耐腐蚀性能。方法在西沙海域环境开展30CrMnSiA合金钢三种涂层的自然暴晒实验,暴晒实验时间为3年,分别通过测试光泽度、色差、电化学阻抗值等手段检测腐蚀状况来研究腐蚀特点。结果三种涂层的光泽度和色差随着时间的增长逐渐减少,暴晒后三种涂层的光泽度和色差相差不大,但三种涂层检测的电化学阻抗值相差很大,且C1涂层阻抗值明显大于C2和C3涂层。结论 C1涂层体系相较于C2和C3两种涂层体系有更高的耐腐蚀性能。  相似文献   

17.
郭强  赵巍  张冲 《装备环境工程》2024,21(3):129-137
目的 研究Zn-Al合金涂层在热带海洋大气环境中的腐蚀行为,为低合金钢长效防护涂层的选用提供依据。方法 采用电弧热喷涂和高铝合金丝制备高铝含量Zn-Al合金涂层,通过户外暴露试验,采用目视、扫描电镜及能谱仪、金相显微镜、XRD、电化学交流阻抗谱和动电位极化曲线等方法,对不同暴露周期的涂层宏观、微观表面形貌、成分组成、截面形貌、腐蚀产物组成、电化学性能和腐蚀速率等进行观察、测试。结果Zn-Al合金涂层是以质量比为50%:50%的Zn/Al合金组成。在0~540 d周期内,涂层腐蚀产物主要由碱式锌铝碳酸盐化合物Zn6Al2(OH)16CO3·H2O和羟基锌铝碳酸盐化合物Zn0.70Al0.30(OH)2(CO3)0.15·x H2O、Zn0.71Al0.29(OH)2(CO3<...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号