首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

2.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

3.
针对饮用水硝酸盐污染和固定床硫自养反硝化脱氮负荷低等问题,开展流化床型硫自养反硝化脱氮研究,探究聚乙烯醇-海藻酸钠-活性炭悬浮填料对硫自养反硝化的影响,并对比了不同硫源(升华硫、硫代硫酸钠和生物硫)对反硝化效果的影响.结果表明,悬浮填料可显著提升反硝化脱氮效果,升华硫与硫代硫酸钠效果优于生物硫.在最佳条件下,TN去除率可稳定保持在98.49%,TN脱氮负荷达2.84 g·L-1·d-1.机理分析表明,悬浮填料中海藻酸钠可作为异养反硝化的有机碳源,实现自养与异养反硝化相结合,减少了副产物NO2-和SO42-的生成,并提供碱度,保持体系pH的稳定.加入悬浮填料后,反硝化微生物生长得到促进,优势菌属为Thauera(兼性自养反硝化菌)和Brachymonas(异养反硝化菌).  相似文献   

4.
研究了单质硫颗粒自养反硝化柱中表面和间隙生物膜的微生物群落结构、功能基因和代谢途径等生物信息学特征.结果表明,硫颗粒表面生物膜的微生物菌群多样性低于间隙生物膜.氮代谢功能基因丰度差异较为显著,间隙生物膜中硝酸盐和亚硝酸盐的胞外转运蛋白基因丰度远高于表面生物膜,分别为0.0792%、0.109%与0.0157%、0.0314%.对于还原性反硝化代谢,表面生物膜的总基因丰度却明显低于间隙生物膜,分别为0.367%、0.406%.此外,参与反硝化过程的基因丰度明显不同,特别是将NO3-还原成NO2-以及将N2O还原成N2过程中的基因.对于硫代谢,没有观察到明显的差异.APS (硫酸腺苷)氧化是将SO32-氧化为SO42-的主要途径,其基因丰度远远高于直接氧化途径,分别为0.137%与0.0005%(表面)、0.138%与0.0007%(间隙).结果表明,在单质硫自养反硝化过程中,间隙生物膜与表面生物膜中的微生物存在合作关系,协同促进硫自养反硝化脱氮过程.  相似文献   

5.
3BER-S耦合脱氮系统运行特性研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为了强化三维电极生物膜脱氮工艺(3BER)的脱氮效果,将3BER与硫自养反硝化技术耦合成3BER-S工艺,用于低碳氮比城市污水厂尾水的深度脱氮处理.与3BER对比研究结果表明,3BER-S工艺在TN去除率、系统pH平衡能力和NO2--N积累方面均优于3BER工艺;当进水C(NO3--N)= 35±2mg/L,TOC:N:P=10.7:10:1,pH=7.0~7.5时,3BER-S耦合工艺对TN和NO3--N的去除效率分别为85%和94%,分别比3BER高15%和10%;出水中NO2--N的浓度为3.04mg/L,比3BER低2mg/L.3BER-S中硫自养反硝化作用定量分析表明,硫自养脱氮作用在整个脱氮过程中所占比例为14.07%,单质硫的有效利用率达到79.5%,硫自养反硝化过程对稳定3BER-S系统出水pH值起重要作用.根据3BER-S中微生物基于反硝化细菌特异性基因nirS的克隆文库结果,系统中反硝化细菌都与β变形菌纲中的细菌有较高的同源性,其中61.41%的反硝化细菌属于陶厄氏菌属(Thauera);脱氮硫杆菌和嗜酸菌属(Acidovorax)分别占3.50%和19.30%.表明当碳源比较充足时,3BER-S工艺的脱氮作用主要以异养反硝化过程为主,以单质硫和氢为电子供体的自养反硝化脱氮作用也占有一定比例.  相似文献   

6.
氮和磷过度排放会破坏水生态环境,为此开发高效、廉价的废水脱氮除磷材料,对缓解水体富营养化具有重要意义.利用天然磁黄铁矿、黄铁矿和低硫精矿(Low sulfur concentrate简称LSC)构建铁硫矿物自养反硝化脱氮除磷体系,考察了不同铁硫矿物自养反硝化脱氮除磷性能,探究了黄铁矿、磁黄铁矿相互作用机理和反应前后微生物群落变化.结果表明,相较于黄铁矿、磁黄铁矿,LSC具有更高的平均脱氮速率(0.30mg·L-1·h-1)和磷去除率(89.8%),表明LSC具有优异的脱氮除磷性能;此外,在相同反应条件下,黄铁矿和磁黄铁矿混合体系脱氮性能高于单一矿物,显示黄铁矿、磁黄铁矿在自养反硝化过程存在协同作用;高通量测序结果表明,硫自养反硝化典型菌属为Thiobacillus和Sulfurimonas,在LSC体系中Sulfurimonas(硫磺菌属)丰度显著增加,推测LSC在长期存放过程中氧化生成单质硫可提高自养反硝化速率.  相似文献   

7.
3DBER-S反硝化脱氮性能及其菌群特征   总被引:2,自引:0,他引:2       下载免费PDF全文
针对污水处理厂尾水TN去除问题,采用16S rDNA克隆文库法,探究了3DBER-S(三维电极生物膜耦合硫自养脱氮工艺)的强化脱氮机制及其菌群特征. 结果表明,I(电流)和HRT(水力停留时间)对3DEBR-S中氢自养和硫自养反硝化作用所占比例的影响较大,但对脱氮效率影响不显著. 当进水C/N〔ρ(CODCr)/ρ(TN)〕为1、ρ(NO3--N)为35 mg/L、I为300 mA、HRT为4 h时,NO3--N和TN去除率可分别稳定在80%和74%以上. 16S rDNA克隆文库结果显示,反应器中β变形菌纲为优势菌群,占47.89%〔以OUT(操作单元)计〕. 在β变形菌纲中,与具有反硝化功能的陶厄氏菌属(Thauera)相似的细菌所占比例最大,为52.94%;与可分别利用硫和氢为电子供体进行反硝化脱氮的硫杆菌属(Thiobacillus)和食酸菌属(Acidovorax)相似的细菌分别占17.65%和14.71%. 3DBER-S中存在异养联合氢自养和硫自养反硝化协同去除硝酸盐氮的作用,可为反硝化脱氮提供充足的电子供体,节约了有机碳源消耗,并保证了稳定高效的脱氮效果.   相似文献   

8.
研究了3种外源硫(Na2SO4、Na2SO3和Na2S2O3·5H2O)对Desulfovibrio desulfuricans sub sp.(D.desulfuricans sp.)的胞外聚合物(EPS)的胁迫/诱导作用。结果表明,在还原性硫源0.50g/L Na2SO3的条件下,EPS产量最高,为2104.39mg/g VSS,蛋白质含量为1888.52mg/g VSS,较胁迫/诱导前均提高了300%以上;其对Zn(Ⅱ)的吸附性能最好,为954.4mg/g EPS,提高了98.17%。三维荧光(3D-EEM)结果表明,胁迫/诱导后EPS中类酪氨酸均大量增加;傅里叶红外光谱(FTIR)结果表明,胁迫后-OH、C=O、C-O-C等官能团均大量增加,在Zn(Ⅱ)的吸附中发挥了重要作用;X光电子能谱(XPS)结果表明,在还原性硫源(Na2SO3和Na2S2O3·5H2O)胁迫/诱导后,EPS中C-O/C-N、C=N和某种含氧基团(X)大量增加,可能是吸附Zn(Ⅱ)的主要基团。  相似文献   

9.
为探究硫自养反硝化过程中含硫副产物的产生规律,建立了上流式硫自养固定床生物反应器,考察HRT(水力停留时间)对水中NO3--N去除的影响,运用零级和1/2级反应动力学模型对NO3--N还原过程进行拟合,通过测定与理论计算分析含硫副产物的产生趋势及规律,利用高通量测序技术(high-throughput sequencing)测定微生物群落结构空间分布特征.结果表明:①当进水NO3--N浓度为(30.45±0.38)mg/L,HRT为4和1 h时,NO3--N去除率达到98%以上.硫自养反硝化过程符合1/2级反应动力学模型,1/2K1/2V(1/2级反应动力学速率常数)为5.69 mg1/2/(L1/2·h).②出水SO42-的产生量接近理论值,S2-在反应器中部出现微量的积累,在出水口处浓度进一步降低(< 0.5 mg/L).③HRT的缩短改变了反应器内部微生物群落α多样性的变化规律;Proteobacteria成为了最主要的优势菌群,各阶段所占比例均大于59%,Sulfurimonas为最常见的反硝化菌,在HRT为1 h时,反应器中部其丰度达到36%,成为反应器中的优势菌属;Desulfurella为SRB(硫酸盐还原菌),其丰度的增加与反应器内部S2-的积累一致.研究显示,硫自养反硝化过程中产生的SO42-与理论值接近,S2-产生量沿反应器高度方向呈现先增加后降低的趋势,微生物群落结构分布情况与反应器高度有关.   相似文献   

10.
陈川  张雨  张权  樊凯丽 《环境科学研究》2023,(12):2221-2234
在“双碳”目标背景下,以异养反硝化为技术核心的传统工艺尚不能满足低碳脱氮的需求.硫源介导的自养反硝化工艺(sulfur-driven autotrophic denitrification,SDAD)因其高效脱氮且同步减碳的优势而在生物脱氮领域受到广泛关注.在国内外已有研究的基础上,本文系统梳理了SDAD及其衍生工艺的最新进展,重点关注工艺效能、功能微生物代谢机制、温室气体(N2O)减排机制及其工程化应用进展.结果表明:(1)SDAD体系由自养硫氧化反硝化细菌(autotrophic sulfur-oxidizing nitrate-reducing bacteria,a-soNRB)、异养硫氧化反硝化细菌(heterotrophic sulfur-oxidizing nitrate-reducing bacteria,h-soNRB)和硫歧化细菌(sulfur disproportionating bacteria,SDB)三类微生物相互作用,共同完成脱氮.低硫化物浓度(S2-浓度为6.25 mmol/L)下,a-soNRB是主要的功能菌....  相似文献   

11.
不同SBR系统N2O排放及微生物群落比较   总被引:1,自引:0,他引:1  
为了解污水脱氮中微生物群落对N2O排放的影响,在相同的工艺条件下,研究了制药厂(A)和啤酒厂(B)2种不同来源污泥在SBR系统中的N2O排放特性.结果发现:①A和B 2个系统总氮去除率在97.5%和98.6%的情况下,脱氮中N2O态氮所占比例分别为6.35%和2.84%,相差2倍以上.②A系统的N2O排放时期主要集中在好氧硝化段,而B系统则主要集中在缺氧反硝化段.③在1个脱氮周期内,A系统只有1个N2O排放高峰,出现在好氧硝化段(第3小时);而B系统有2个N2O排放高峰,分别出现在好氧硝化段(第3小时)和缺氧反硝化段(第6小时).采用PCR-DGGE技术分析微生物群落特征发现,A系统和B系统的微生物群落有明显差异,表明污水脱氮中微生物群落是影响N2O排放的重要因素.通过优化微生物群落结构,可有效控制污水脱氮中N2O排放.   相似文献   

12.
硫自养反硝化因无需外加碳源、运行过程无CO2直接碳排放,且硫或硫化物价格低廉而开始进入大众眼帘.硫自养反硝化概念始于20世纪70年代,但国际上对其研究与应用一直默默无闻,反而是近年来在我国方兴未艾,这一反差现象耐人寻味.通过对硫循环及硫资源概括总结发现,全球硫储量虽多,但硫资源开采主要来源于石油、天然气冶炼过程中对硫的回收,获得并不具有持久性.对硫自养反硝化过程原理、存在问题、直接碳排放等分析显示,自养反硝化速率较异养反硝化低61.5%~75.6%,反应过程会产生大量SO42-.此外,还存在硫填料滤床穿透逐渐降低处理负荷等问题.碳排放分析揭示,低pH(<6.5)会抑制反应进程,可能导致反硝化止步于氧化亚氮(N2O)而产生相当释放量.相反,除外加碳源导致CO2直接排放问题外,异养反硝化在同步脱氮除磷方面优势明显.况且,碳源缺乏问题存在多种解决方案,完全可以通过不外加碳源或选择废弃生源性碳源来解决碳排放问题.因此,在选择正确脱氮除磷技术路径时需要在深入了解反应机理的基础上,全...  相似文献   

13.
以含硝态氮(NO3--N)的模拟地下水为研究对象,采用零价铁(Fe0)与生物耦合实现混养反硝化高效脱氮。结果表明:在C/N为2.78~3.08时,1号反应器(仅添加活性污泥)平均TN和NO3--N去除率分别为39.6%和40.1%,而2号反应器(添加活性污泥+Fe0)中平均TN和NO3--N去除率分别为80.7%和81.4%。2号反应器单批次物质转化结果表明,1个反应周期内包含2个阶段:0~12 h混养反硝化阶段及12~24 h自养反硝化阶段,且脱氮过程集中在前12 h;零级动力学结果表明,0~12 h的反硝化速率为2.38 mg/(L·h),是12~24 h反硝化速率的9.5倍;通过理论计算可知,4~12 h自养及异养脱氮贡献比例较稳定,两者比值约为4∶6,12~24 h自养反硝化作用贡献占比为100%。SEM和XRD分析结果表明,Fe0表面有明显的微生物腐蚀现象,FeOOH和含铁有机复合物是主要的腐蚀产物。微生物群落结构分析表明,Fe0可有效提高菌落多样性与丰富性,且动胶菌属(Zoogloea)作为优势菌属在反硝化过程中起主导作用。  相似文献   

14.
生物循环流化床工艺自养反硝化研究   总被引:2,自引:0,他引:2  
对城市污水厂排水进行深度处理时,生物循环流化床提供的兼性环境有利于好氧硝化细菌和兼性厌氧自养反硝化细菌的生长,自养反硝化细菌可以在低有机碳源的情况下,以硫为电子供体进行自养反硝化从而去除NO3--N. 试验以硫作为反硝化的电子供体引入自主研发的生物循环流化床中进行脱氮,试验进水各项指标参照北京市水污染物排放标准(DB11 307-2005)二级限值. 在6个不同的工况下运行,工况5出水水质可达到国家再生利用景观环境用水的水质,出水ρ(NO3--N)为9.23 mg/L,去除率为70.61%;出水ρ(NH4+-N)为2.36 mg/L,去除率为77.54%;出水ρ(TN)为13.53 mg/L,去除率为68.91%;出水ρ(SO42-)为245.15 mg/L,去除的NO3--N与生成的SO42-质量比为1∶7.7.   相似文献   

15.
为提高污水厂尾水水质,本研究采用新型缓释碳源复配海绵铁、活性炭作为反硝化生物滤池的复合填料,分别以模拟二级处理出水和实际污水厂尾水为进水,考察了复合缓释碳源填料反硝化生物滤池-臭氧-活性炭(DNBF-O_3-GAC)组合工艺同步脱氮除磷及去除微生物代谢产物的性能,并借助Mi Seq高通量测序技术分析了反硝化生物滤池生物膜中的微生物群落结构特征.结果表明,组合工艺取得了较好的脱氮除磷及微生物代谢产物的效果:模拟配水阶段和实际尾水阶段NO_3~--N平均去除率分别达到88.87%、79.99%;TP平均去除率分别达到87.67%、65.51%;UV254平均去除率分别达到45.51%、49.23%.组合工艺各处理单元具有不同的功能:NO_3~--N、TN、TP、TFe的变化主要发生在反硝化生物滤池反应器中;UV254、三维荧光强度的变化主要发生在臭氧-活性炭反应器中.微生物在属水平进行聚类分析结果表明,反硝化脱氮系统存在硫自养反硝化菌和异养反硝化菌,当实际尾水阶段碳源相对不足时,硫自养反硝化作用有了显著加强,Thiobacillus(硫杆菌属)的占比由7.44%上升至29.62%,硫自养反硝化与异养反硝化形成的这种互补作用延长了新型缓释碳源的使用周期.  相似文献   

16.
硫自养反硝化是一种具有低碳、低费、低污泥产量优势的脱氮技术。文章介绍了基于不同电子供体、pH、溶解氧(DO)和水力停留时间(HRT)等因素对硫自养反硝化反应效率的影响并对比了不同工艺的优缺点,阐述了硫自养反硝化工艺中微生物的群落特征,提出了现阶段存在的不足与缺陷,最后对其未来应用进行展望。  相似文献   

17.
针对雨水径流中NO3--N含量较高易引起受纳水体富营养化的问题,利用植物碳源和硫作为电子供体构建混养反硝化系统强化脱氮.通过对比不同植物碳源(芦苇、马蔺、黄菖蒲、鸢尾)的脱氮效能和释碳性能,优选芦苇作为混养反硝化系统的有机电子供体.基于芦苇构建的不同硫碳比(0.2、0.6、0.8、1.0)混养反硝化系统运行效能表明,高硫碳比系统在运行后期NO3--N去除率(98.14%)相对稳定且反硝化条件较为适宜,但硫添加量的提高不利于芦苇持续释碳,还导致了较为明显的NH4+-N和SO42-积累现象.运行效果评价显示出0.2硫碳比系统具有最低的综合污染指数,表现出最佳的脱氮同步副产物控制能力.本研究结果可为雨水径流混养反硝化脱氮技术提供理论支撑.  相似文献   

18.
为解决AnMBR(厌氧膜生物反应器)出水NH4+脱除的问题,提出利用AnMBR出水中残余CODCr、溶解性CH4以及低价态硫元素,通过构建缺氧滤池和好氧滤池进行生物异养和硫自养脱氮的方法,进一步削减AnMBR出水CODCr、去除溶解性CH4、同时同步生物脱氮.结果表明:①缺氧滤池与好氧滤池经过120 d单独驯化与33 d串联驯化后,在HRT(hydraulic retention time,水力停留时间)为6 h、进水为实际AnMBR出水的工况条件下,出水ρ(TN)为17.93 mg/L,去除率为52.7%;出水ρ(NH4+-N)为2.78 mg/L,去除率为92.3%,达到GB 18918-2002《城镇污水处理厂污染物排放标准》一级B标准.在HRT为8 h工况条件下,出水ρ(TN)为14.60 mg/L,去除率为59.0%;出水ρ(NH4+-N)为2.22 mg/L,去除率为93.7%,达到GB 18918-2002一级A标准.②脱氮滤池中氮脱除路径主要包括残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化,并通过物料衡算评价了三者对于氮脱除的贡献,在HRT为6 h的工况条件下,脱氮滤池脱氮过程中残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化三者占比分别为54.1%、24.3%和21.5%;在HRT为8 h的工况条件下,脱氮滤池脱氮过程中3种途径占比分别为70.4%、13.8%和15.8%.研究显示,脱氮滤池可以实现对AnMBR出水的低耗生物脱氮以及整体水质的达标排放.   相似文献   

19.
基于硫自养反硝化作用,寻求一种经济、快速、高效地污水脱氮工艺,采用硫磺/硫铁矿组合进行自养反硝化脱氮试验,以低C/N市政污水为处理对象,分别考察温度,硫磺与硫铁矿体积比和HRT等理化因素对反应器脱氮性能的影响.结果表明,在进水TN质量浓度约40 mg·L-1条件下,1号反应器最佳HRT为2.5 h,TN去除率平均稳定在72.2%,出水TN约10.55 mg·L-1;2号反应器最佳HRT为3.5 h,TN平均去除率约67.8%,出水TN平均稳定至12.90 mg·L-1;3号反应器最佳HRT为3.5 h,TN平均去除率60.6%,出水TN稳定在15.00 mg·L-1左右.硫磺/硫铁矿自养反硝化系统比硫铁矿自养反硝化系统启动快;该系统脱氮效率随着硫磺与硫铁矿体积比减小而降低;该系统脱氮性能对温度的变化并不敏感,脱氮性能优于单独以硫铁矿为硫源的自养反硝化系统;系统中硫自养反硝化过程的主要功能菌属是SulfurimonasThiobacillus,在3个反应器所占比例为1号 > 2号 > 3号.  相似文献   

20.
针对固相反硝化体系,以聚己内酯复合花生壳(PCL/PS)的固体碳源为基底,耦合以S和Fe O主导的自养反硝化,构建新型多功能碳源,考察其对典型微污染物(Cr(Ⅵ)、Cl O4-、BPA、NPX)与硝酸盐的同步降解效能,探究自养异养共存的反硝化体系内微生物群落特征及微观作用机制.结果表明,PCL/PS异养反硝化体系具有更好的反硝化脱氮和同步去除Cr(Ⅵ)、BPA性能,对NO3--N、Cr(Ⅵ)的去除率分别为94%、92%,对NO3--N、BPA的去除率均可达99%以上;PCL/PS同时耦合Fe O和S的体系反硝化脱氮同步去除Cl O4-、NPX性能良好且稳定,在反硝化率均维持90%的基础上,对NO3--N、Cl O4-的去除率分别达90%、96%,对NO3--N、NPX的去除率分别达9...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号