首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 339 毫秒
1.
利用微脉冲激光雷达(MPL)对上海浦东2008年12月1日至2010年11月31日期间连续观测的霾期间气溶胶的消光特性进行分析,讨论了上海浦东地区不同强度霾和无霾时气溶胶的垂直分布日变化与季节变化.结果表明,重、中度霾的气溶胶主要分布在500m以下,小时平均消光系数值在0~1.2km-1范围内波动;轻度霾及轻微霾时段,小时平均消光系数波动范围约在0~0.5km-1;无霾时段小时平均消光系数波动范围约在0~0.2km-1;中-重度霾时段消光系数春>冬>夏>秋;夏季低层大气消光较大,春季高层大气消光较大,冬秋两季随高度增加消光逐渐减小;夏冬两季较易发生中、重度霾.  相似文献   

2.
运12飞机和空中国王飞机在2007~2018年的飞机观测资料,分析了北京地区大气气溶胶近12a来的时空变化特征.结果表明,气溶胶数浓度随时间变化显示负增长趋势,而与之相反,气溶胶有效直径表现出正增长趋势.气溶胶垂直廓线的季节变化和气候条件以及边界层的季节变化紧密相关.在边界层高度,季节性气候变化和地面污染物排放强度的影响下,不同季节以及地面天气形势下的气溶胶垂直廓线特征差异也十分明显.气溶胶在边界层内混合均匀,但由于夏季边界层高度较冬季更高,气溶胶能够在更高的高度范围内混合均匀,从而降低了夏季近地面的气溶胶数浓度.此外,气溶胶在550nm的入射波长下散射系数的垂直变化与气溶胶数浓度有较好的一致性,其高值多出现在冬季以及污染物浓度较高的天气条件下.  相似文献   

3.
利用MODIS和CALIPSO level2气溶胶产品,通过统计分析多个气溶胶光学参数(光学厚度、消光系数、色比和退偏振比)的时空分布及其变化,得出2007~2016年华东地区(27°N~37°N,113°E~123°E)气溶胶三维分布特征.结果表明,华东地区气溶胶光学厚度(AOD)年平均呈现出北高南低,平原高、山地低的分布特征.AOD季节分布表现为春夏高,秋冬低,夏季最高,冬季最低,且研究区域北部(31°N以北)AOD季节变化比南部地区剧烈.气溶胶消光系数(σ)随高度呈指数衰减,秋冬(春夏)低层σ较大(小)但随高度衰减较快(慢),2km以下北高南低.年平均色比(CR)随高度递增,变化范围为0.6~0.7,随时间有减小趋势.CR季节特征为4km以下春季最大,夏季最小且均一;4km以上冬季最大,夏季最小.年平均退偏振比(PDR)随高度递增,变化范围为0.1~0.25,北部较大.PDR季节特征为5km以下春季最大,夏季最小;5km以上冬季最大,夏季最小.从气溶胶组成来看,华东地区2km以下以污染沙尘为主;2~5km春季以沙尘为主,其它季节以烟尘为主;5km以上冬春以沙尘为主,夏秋以烟尘为主.  相似文献   

4.
利用6个激光雷达站点数据从年际和季节变化尺度对浙江省2017~2018年气溶胶垂直分布特征进行研究,并结合污染物浓度数据分析了浙江省主要颗粒物类型的季节差异.结果表明,大部分站点2018年气溶胶消光系数整体小于2017年;边界层内消光系数空间上呈中部高东西低的分布形态;消光系数季节变化表现为冬季最高,秋季其次,而春夏较低;气溶胶在春、夏季集中在地面上方1~2km以内,冬季主要分布在1km以下,秋季受高空气溶胶影响,6个站点呈现出不同的垂直分布模式.进一步,选取发生在2018年4月和7月两次气溶胶跨区域传输过程,综合CALIPSO和MODIS卫星数据、以及后向轨迹、PSCF与CWT模式对污染物来源与传输机制进行探索,发现来自AOD高值区的气团显著加重本地污染.  相似文献   

5.
天津城区春季大气气溶胶消光特性研究   总被引:8,自引:0,他引:8       下载免费PDF全文
利用天津大气边界层观测站2011年4月1日~5月10日气溶胶散射系数、吸收系数、PM2.5质量浓度、大气能见度和常规气象观测数据,分析了气溶胶散射系数和吸收系数的变化特征,以及气溶胶消光系数与PM2.5质量浓度和大气能见度的关系,并对两种方法计算的消光系数进行了比较.结果表明,观测期间天津城区气溶胶散射系数为369.93 Mm-1,对大气消光贡献为86.7%,气溶胶吸收系数为36.32 Mm-1,对大气消光贡献为8.5%,单次散射反照率为0.91;气溶胶散射系数和吸收系数的日变化特征具有明显的双峰结构,对应于早晚交通高峰;不同天气类型下其日分布特征存在较大差异,霾日散射系数和吸收系数最高,沙尘日和降水日次之,晴日最低;气溶胶散射系数和吸收系数与PM2.5质量浓度呈线性正相关,与大气能见度呈指数负相关,观测期间气溶胶质量散射效率均值为2.95m2/g;采用Koschmieder’s公式反算能见度获得的大气消光系数,与通过测量气溶胶散射系数、气溶胶吸收系数、气体散射系数和气体吸收系数等分量加和获得的消光系数相比一致性较好,高相对湿度天气下能见度反算值高于各系数加和值.  相似文献   

6.
激光雷达是大气边界层气溶胶和云的一个高效探测工具。2010年12月利用Mie散射激光雷达对广州城区冬季大气边界层进行系统观测,分析讨论了测站地域上空大气气溶胶的消光系数垂直分布和时间变化的主要特征。结果表明:冬季广州大气边界层气溶胶主要分布在1100m以下区域,气溶胶分布具有多层结构;大气边界层高度稳定分布在500~620m左右,边界层高度日变化不明显;冬季广州气溶胶源较为稳定并且变化慢;广州城区气溶胶浓度白天比晚上大,峰值出现11颐00~14颐00左右,谷值出现在20颐00左右。  相似文献   

7.
天津市春季气溶胶消光特征和辐射效应的数值模拟   总被引:4,自引:1,他引:3       下载免费PDF全文
根据GRIMM气溶胶粒谱分析仪对粒子数浓度在线观测资料,拟合了天津市春季霾日和非霾日的气溶胶粒子谱分布,结合同期气溶胶样品化学组分分析结果,利用米散射理论计算分析霾日和非霾日气溶胶消光特征.在此基础上,对辐射传输模式LOWTRAN7中气溶胶光学参量进行了修正,利用修正后的模式模拟霾日和非霾日的地面辐射通量密度.结果表明,观测期间非霾日气溶胶消光系数平均为0.253km-1,散射系数平均为0.213km-1.霾日气溶胶消光系数平均为0.767km-1,散射系数平均为0.665km-1.对比模式计算的辐射通量密度与观测值,表明短波辐射模拟效果较好.  相似文献   

8.
大气传输路径对上甸子本底站气溶胶光学特性的影响   总被引:1,自引:1,他引:0  
利用2005~2010年北京上甸子本底站的PM2.5浓度、气溶胶散射系数(σsp)的连续观测资料,结合后向轨迹分析方法,探讨了不同季节、不同气团传输路径对本底地区气溶胶光学特性的影响.结果表明,污染物水平不仅与气团来向有关,也与气团的运动状态有关.偏南气团路径下的PM2.5浓度和σsp整体高于偏北气团路径,同时运动速度较慢、高度较低的气团路径多对应较高的PM2.5浓度和σsp.春、夏、秋季来自华北平原地区以及冬季来自华北区域北部的慢速、低气团对上甸子的污染水平有重要贡献.沙尘气溶胶多出现在春季,平均气溶胶质量散射效率(αsp)为0.78 m2·g-1.四季平均人为污染气溶胶的αsp为4.00 m2·g-1,其中冬季最高,春季最低.对于人为污染气溶胶来说,春、夏、秋三季的西北偏西路径、偏南路径以及偏北路径中速度较慢的轨迹组均具有较高的αsp(4.0 m2·g-1),表明这些气团路径受人为排放活动影响较大,而冬季各路径的αsp均较高,说明冬季区域内人为排放的影响比较一致.春、夏、秋三季中其他偏北的气团路径主要受到人为污染与沙尘气溶胶的共同影响.  相似文献   

9.
利用2012~2013年CALIOP卫星产品及合肥地面常规观测资料,筛选统计卫星过境的晴日、霾日过程,通过532nm消光系数、532nm后项散射系数、体积退偏比及色比对合肥霾日及晴日的气溶胶垂直分布特征进行了对比分析.结果表明:霾日夜间,合肥污染物聚集层在500m以下,最大消光系数约为0.55.霾日白天,受湍流作用影响这一高度被抬升到300~700m,最大消光系数为0.67.霾日与晴日气溶胶消光系数差异最为明显的是在1km以内高度内,霾日消光系数为非霾日的3倍,说明霾时的气溶胶聚集在低层大气0~1km内.合肥霾发生时,不规则的、色比在0.2~0.6、后项散射系数在0.001~0.0050km-1?sr-1之间的一般陆地性气溶胶增加.  相似文献   

10.
西安泾河夏季黑碳气溶胶及其吸收特性的观测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为研究西安泾河夏季黑碳气溶胶及其吸收特性,利用2011年夏季西安远郊泾河大气成分站观测的黑碳气溶胶浓度、颗粒物质量浓度、探空资料、地面气象资料,计算边界层顶高度、气溶胶吸收系数、大气消光系数,导出单次散射反照率,并对其进行分析讨论.结果表明:西安夏季黑碳气溶胶浓度为6.07μg/m3;黑碳气溶胶占颗粒物质量浓度PM1.0比值为21.9%,黑碳气溶胶与颗粒物质量浓度PM1.0、PM2.5、PM10相关系数分别为0.69、0.85、0.91;黑碳气溶胶浓度受城市边界层顶高度影响,风向、风速对泾河黑碳气溶胶的堆积输送有不同作用;气溶胶吸收系数和大气消光系数日变化显著,气溶胶吸收系数占大气消光系数比值范围在12%~30%;季单次散射反照率平均值为0.76,变化范围在0.70~0.84.  相似文献   

11.
北京城区夏季静稳天气下大气边界层与大气污染的关系   总被引:7,自引:2,他引:5  
王耀庭  李威  张小玲  孟伟 《环境科学研究》2012,25(10):1092-1098
利用ALS300激光雷达系统测量的信号,根据Fernald方法反演的气溶胶消光系数的最大突变即最大递减率的高度确定大气边界层高度. 结果表明:在夏季静稳天气下,大气边界层平均高度为600 m,其中晴天为1 000 m,雾天为700 m,阴雨天在200~300 m之间. 静稳天气下的大气边界层不容易被有效突破,故不利于大气污染物扩散. 大气边界层高度对污染物浓度影响显著,没有降雨时,大气边界层降低(400 m),大气污染加重,在城区宝联站监测的ρ(PM2.5)近200 μg/m3,在大气本底站——上甸子站近150 μg/m3;如果伴有降水,大气边界层高度升至600 m,大气污染则减轻,2个站点观测的ρ(PM2.5)均降至50 μg/m3以下. 静稳天气下的大气污染呈现区域性特点.   相似文献   

12.
太湖上空大气气溶胶光学厚度及其特征分析   总被引:2,自引:0,他引:2  
基于高精度的太阳光度计(CE-318)得到太湖上空气溶胶长期观测数据,获得了太湖上空从2005年9月~2010年10月的气溶胶光学厚度(AOT)以及相应的ngstrm参数α.5 a的观测资料表明,太湖上空AOT的高值区出现在夏季的6~7月,低值区出现在秋冬季节的10月~次年1月;α的低值区和高值区分别出现在春季的3~4月和秋季的9~11月,AOT及对应的α的变化主要与该地区的天气形势有关.从频率分布来看,AOT(500 nm)只有一个峰值,最高频率值为0.4~0.6,约占总样本的26%,年均值为0.80.按照平均AOT(500 nm)计算,气溶胶造成的太阳直射辐射的透过率衰减至少为50%,致使太湖地区的大气较为混浊,形成严重的雾霾天气;ngstrm波长指数α有2个峰值,最高频率区间为1.1~1.3和1.3~1.5,分别占总样本的30%,年平均值为1.17.结果还表明AOT(500 nm)和α的日均值变化范围均较大,表明太湖上空有不同类型的气溶胶粒子共存;当α增大时,AOT(500 nm)的均值呈递减趋势.总体结果分析表明,太湖上空的AOT值随时间变化较大,属于城市-工业型气溶胶类型.  相似文献   

13.
Ground-based observation of aerosol optical properties in Lanzhou, China   总被引:1,自引:0,他引:1  
Aerosol optical properties from August 2006 to July 2007 were obtained from ground-based and sky radiance measurements in Semi- Arid Climate and Environment Observatory of Lanzhou University (SACOL), China. High aerosol optical thickness (AOT) associated with low ?ngstr¨om exponent ( ) was mainly observed in spring, which was consistent with the seasonal dust production from Hexi Corridor. The maximum monthly average value of AOT 0.56 occurred in March of 2007, which was two times larger than the minimum value of 0.28 in October of 2006. Approximately 60% of the AOT ranged between 0.3 and 0.5, and nearly 93% of value varied from 0.1 to 0.8, which occurred in spring. The significant correlation between aerosol properties and water vapor content was not observed. The aerosol volume size distribution can be characterized by the bimodal logarithm normal structure: fine mode (r < 0.6 m) and coarse mode (r > 0.6 m). Aerosols in spring of SACOL were dominated by large particles with the volume concentration ratio of coarse to fine modes being 7.85. The average values of asymmetry factor (g) in the wavelength range 440–1020 nm were found to be 0.71, 0.67, 0.67 and 0.69 in spring, summer, autumn and winter, respectively.  相似文献   

14.
为研究北京市气溶胶垂直方向上的分布特征,利用微脉冲激光雷达(MPL)对北京市2015年12月-2016年11月的气溶胶光学特征进行分析,讨论了气溶胶消光系数的季节性特点以及不同污染等级下的垂直分布,并对其影响因素进行了探讨.结果表明:①北京市气溶胶消光系数垂直特征在季节上存在异质性.秋、冬两季近地面1.0 km以下气溶胶消光系数显著增大,最大气溶胶消光系数大于1.0 km-1;春、夏两季污染日较少,气溶胶消光系数在垂直方向上变化较为平缓.②不同污染等级下气溶胶消光系数的垂直特征差异明显.空气质量为优-良水平时,气溶胶消光系数较低,基本不高于0.7 km-1;轻-中度污染时,气溶胶消光系数在不同季节差异较大,冬、春两季气溶胶消光系数不超过0.8 km-1,夏、秋两季在1.0 km-1左右,部分监测站甚至在1.4 km-1左右;重度及以上污染时,气溶胶消光系数基本在1.0 km-1以上,最高可达1.7 km-1.③105 m处气溶胶消光系数与ρ(PM2.5)相关性较好.气溶胶消光系数除受ρ(PM2.5)影响外,还受相对湿度影响较大.夏、秋两季对流层底层大气相对湿度偏高,致使气溶胶消光系数显著高于春季和冬季.研究显示,利用激光雷达可对北京市气溶胶垂直方向分布特征进行有效分析,气溶胶的垂直分布受污染水平和相对湿度的影响呈季节性变化.   相似文献   

15.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

16.
利用2015年1月气溶胶散射和吸收系数、PM2.5质量浓度、大气能见度以及常规气象观测数据,分析了南京冬季大气气溶胶散射系数与吸收系数的变化特征,给出了散射系数与吸收系数对大气消光的贡献,以及能见度与PM2.5质量浓度和相对湿度的关系.结果表明,观测期间南京大气气溶胶的散射系数和吸收系数分别为(423.4±265.3) Mm-1和(24.5±14.3) Mm-1,对大气消光的贡献分别为89.2%和5.2%,表明大气消光主要贡献来自于气溶胶的散射.散射系数与PM2.5相关性较好(R2=0.91),能见度随PM2.5质量浓度呈指数下降,也与相对湿度保持一定负相关性.能见度均值为4.3km,且连续出现能见度不足2km的低能见度天气,霾天气下消光系数和PM2.5质量浓度大幅超过非霾天气,最高值分别达到1471.2Mm-1和358 μg/m3,霾天气下能见度的降低来自颗粒物与相对湿度的共同影响.  相似文献   

17.
基于成都市2013年6月~2015年5月期间由Mie散射激光雷达探测的大气消光系数廓线资料,发现混合层以上在颗粒物消光和分子消光之间一致存在一个S型的过渡区,利用sigmoid函数对此分布形态进行模拟,通过计算该函数上下曲率最大点所在的高度,据此提出了颗粒物分界层Mie散射激光雷达识别的sigmoid算法.针对该算法模拟效果的分析表明,颗粒物分界层过渡区附近大气消光系数理论廓线和实测廓线保持了高度的相关性,二者在春夏秋冬四季的相关系数(R)分别为0.9971±0.0052、0.9935±0.0167、0.9979±0.0038和0.9990±0.0021(均通过α=0.05的显著性检验).基于sigmoid算法计算的颗粒物分界层过渡区与成都市温江站探空资料得到的逆温层之间存在很好的对应关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号