首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
兰州市在"一带一路"建设中发挥着重要的战略支点作用.基于OMI(ozone monitoring instrument,臭氧层监测仪)数据产品,对2006-2015年兰州市对流层O3柱浓度与前体物及气象因子的相关性进行研究.结果表明:2006-2015年兰州市对流层O3柱浓度值与HCHO总柱浓度值均随时间的变化呈先增后减的趋势,对流层NO2柱浓度值呈逐年递减的趋势;相关性分析得出,对流层O3柱浓度与HCHO总柱浓度、对流层NO2柱浓度相关性较高的地区范围呈先增后减的趋势.在敏感控制区上,2006-2015年VOCs敏感控制区从有到无,VOCs-NOx协同敏感控制区范围逐渐缩小,NOx敏感控制区范围逐渐扩大;在气象因子上,对流层O3柱浓度与气温、日照时间呈显著正相关,与气压、降水量呈显著负相关.在偏北风向上,风速为1.7~1.9 m/s时,兰州市大气对流层O3柱浓度相对较高.研究显示,NOx排放量的减少能有效降低兰州市对流层O3柱浓度.   相似文献   

2.
辽宁省近12年对流层甲醛柱浓度时空变化及其影响因素   总被引:2,自引:0,他引:2  
基于OMI遥感反演的对流层甲醛柱浓度资料,研究了辽宁省2005—2016年对流层甲醛柱浓度的时空分布特征,并分析了对流层甲醛柱浓度的主要影响因素.结果表明:近12年辽宁省对流层甲醛柱浓度整体上波动较大,2005—2013年逐渐增大,平均增速为0.74×1015molec·cm-2,空间分布上整体表现为低值区主要分布在辽西山地丘陵地区,高值区分布在沈阳以东大部分地区,浓度在12×1015~13×1015molec·cm-2之间;2005—2008年辽宁省甲醛污染相对较轻,对流层甲醛柱浓度整体多在3级水平以下;2009—2013年之间,对流层甲醛柱浓度的3级分布区域逐渐缩小,4级分布区域不断扩大,并在2010年出现5级水平污染区域且于2013年达到最大.春季各个区域对流层甲醛柱浓度相对于其它季节较低,夏季各个地区对流层甲醛柱浓度值整体上高于其它季节,以4级及5级水平污染为主,秋、冬季各个区域的对流层甲醛柱浓度值分布居于春、夏两季之间.辽宁省对流层甲醛柱浓度的月变化特征大致符合正弦曲线分布特征,即对流层甲醛柱浓度自1月不断上升,于6月达到峰值后又不断下降.能源消耗及工业生产与大气中甲醛的浓度的变化息息相关,人口数量及生产总值与对流层甲醛柱浓度也具有显著的正相关关系.高温利于甲醛的扩散和挥发,辽宁省独特的地形地理位置对甲醛的扩散与传播产生影响.  相似文献   

3.
为研究以石化工业为主的奎屯市-独山子区-乌苏市(简称“奎-独-乌”)区域大气对流层NO2柱浓度的时空变化,基于地基多轴差分吸收光谱仪(MAX-DOAS)于2018年2月—2019年7月在各城市城区中心进行固定监测(09:00—20:00),以及在环奎-独-乌区域进行车载移动监测(10:00—15:00),结合地形地貌、气象、工业分布和人为排放量等因素,反演分析该区域对流层NO2柱浓度的时空变化规律.结果表明:①奎-独-乌区域对流层NO2柱浓度日变化呈早晚高、中午低,冬季高、夏季低的特点,对流层NO2柱浓度季节性变化呈冬季(11.8×1015 molec/cm2)>秋季(9.46×1015 molec/cm2)>春季(7.46×1015 molec/cm2)>夏季(4.33×1015 molec/cm2)的特征.奎-独-乌区域对流层NO2柱浓度最高值均出现在冬季(1月),呈独山子区(22.23×1015 molec/cm2)>奎屯市(21.30×1015 molec/cm2)>乌苏市(18.34×1015 molec/cm2)的特征.②奎-独-乌区域大气对流层NO2柱浓度存在空间集聚现象,且区域内部差异显著.不同季节高值主要出现在区域内交通交错区(奎屯立交桥、独山子立交桥)和工业集中分布区,最低值均出现在奎-独-乌区域西南部的乌苏市,且位于主导西风通道的上风向.③结合后向轨迹分析发现,奎-独-乌区域气流来源中冬季气流运动在水平方向和垂直方向上均不利于污染物扩散,夏季西北风向导致下风向路段NO2浓度相对较高,该区域大气NO2污染物以本地输送为主,且在城际间存在污染物的传输与积累.④奎-独-乌区域的能源结构以煤炭为主,其固定源排放以工厂和电力部门为主,而乌苏市交通移动源所产生的NO2排放总量远高于奎屯市和独山子区.该区域冬季燃煤6个月,低风速(1.5~3.0 m/s)频率持续时间较长,加之独特的山盆结构形成的“山谷风”,有较厚的逆温层,不利于污染物远距离扩散.研究显示,能源工业结构背景下形成的奎-独-乌区域环境有利于大气污染物的聚集和积累,其污染源以本地污染为主.   相似文献   

4.
基于最新的TROPOMI反演的对流层NO2垂直柱浓度数据,利用Google Earth Engine平台分析了粤港澳大湾区近2a对流层NO2垂直柱浓度的分布及变化特征.结果表明, TROPOMI传感器反演的对流层NO2垂直柱浓度与地表NO2浓度监测值具有较好的相关性,反演产品能够反映地面真实的NO2污染状况;粤港澳大湾区NO2柱浓度分布呈现出较为显著的圈层结构,高NO2柱浓度区域面积约为4468km2,占大湾区总面积的8%,低NO2柱浓度地区的面积约为25331km2,占比超过了45%;大湾区上空的对流层NO2垂直柱浓度存在明显的“冬高夏低,春秋过度”的季节性差异和周期性波动特征;影响因子回归模型结果表明人类活动强度(DNB,夜间灯光)、植被状况(NDVI,植被指数)和地形因子(DEM,数字高程)与地区对流层NO2垂直柱浓度的分布有明显的相关性.本研究成果可为政府和决策者制定相关政策和措施提供借鉴.  相似文献   

5.
基于OMI数据的中国中东部臭氧及前体物的时空分布   总被引:2,自引:0,他引:2       下载免费PDF全文
基于OMI卫星资料,分析了2005—2014年中国中东部地区对流层低层ρ(O3)、对流层NO2柱浓度及甲醛总柱浓度的时空演变趋势及相互关系. 结果表明:近10年来,中国中东部地区对流层低层ρ(O3)呈上升趋势,2005年及2014年分别为60.64、69.43 μg/m3,年均增长率为1.6%;对流层低层ρ(O3)增长的区域面积不断扩大,部分地区增长超23 μg/m3;呈春夏季高,冬季最低的分布趋势. 2005—2012年,对流层NO2柱浓度呈上升趋势,2005年及2012年分别为4.41×1015、5.90×1015 mol/cm2,年均增长率为4.8%;2012年后呈下降趋势,下降的区域面积逐步扩大,部分地区降低约 15×1014 mol/cm2;呈冬季最高、夏季最低的分布特征;2005—2010年甲醛总柱浓度呈上升趋势,2005年及2010年分别为9.74×1015、1.59×1016 mol/cm2,年均增长率为12.6%,2010年后呈下降趋势;呈夏季最高、冬季最低的分布特征;甲醛总柱浓度增长的区域面积逐渐扩大. 利用甲醛与NO2柱浓度比值探讨臭氧控制区的空间分布特征,表明鲁豫晋、京津冀、长三角及珠三角地区中心城市属于VOCs控制区,周围城市属于VOCs-NOx协同控制区,其他地区属于NOx控制区.   相似文献   

6.
近年来伴随着我国经济的持续增长,人为源氮氧化物排放居高不下,导致我国区域大气复合污染日趋严重. NOx排放清单对于大气复合污染研究具有极为重要的意义.为了降低NOx排放清单的不确定性,基于OMI卫星观测的对流层NO2柱浓度资料,结合WRF-CMAQ模型系统,对2014年长三角区域NOx排放清单进行了校验,对于该清单的不确定性进行了初步评估.结果表明,基于长三角地区2014年大气污染物排放清单,利用WRF-CMAQ系统模拟所获得的区域NO2柱浓度平均值(4.66×1015~10.58×1015 mole/cm2)与OMI卫星数据(3.49×1015~11.47×1015 mole/cm2)较为接近,并且相关性较好(平均R=0.65),归一化平均偏差(NMB)在-7.71%~33.52%之间,平均偏差(Bias)在0.06~0.28之间,可以在一定程度上说明2014年长三角区域NOx排放总量基本能够反映区域NO2污染状况.对比分析了OMI卫星遥感资料与CMAQ模型模拟结果,二者NO2柱浓度空间分布情况总体一致,然而,苏南、上海和浙北等工业较发达地区OMI卫星NO2柱浓度低于CMAQ模型模拟值,周边经济欠发达地区OMI卫星数据高于CMAQ模型模拟值,表明空间分布仍有进一步优化的空间.利用近地面卫星观测数据与CMAQ模型模拟结果对比,可得近地层观测ρ(NO2)高于模拟结果,说明仅仅利用地面观测数据验证模型模拟结果存在一定偏差.研究显示,NOx排放清单模型模拟结果在总量和时间变化方面与OMI卫星资料一致,在空间分配方面存在一定偏差.   相似文献   

7.
基于地基多轴差分吸收光谱技术(Multi-axis different optical absorption spectroscopy,简称MAX-DOAS),分析位于天山南坡典型干旱区城市,库尔勒市大气对流层NO2垂直柱浓度(Vertical column densities简称VCD)分布、变化,以了解其变化规律和分布特点。研究表明:(1)库尔勒不同观测点对流层NO2VCD高低表现为,农田区新市区老城区,农田区NO2浓度最大达到3.40×1015molec/cm2。(2)市区观测点,新城区和老城区对流层NO2浓度变化趋势基本一致,呈现V和U字形变化趋势,早上和晚间浓度较高,中午浓度较低,市区浓度变化范围分别为1.91×1015~4.02×1015、0.22×1015~4.59×1015molec/cm2。(3)农田呈现出与市区不同的变化趋势,农田观测区中午之前浓度较低,中午之后NO2浓度呈现升高的趋势  相似文献   

8.
基于OMI卫星遥感反演的NO2柱浓度数据,分析了近11a甘肃省对流层NO2柱浓度的时空变化及相关影响因素,同时利用HYSPLIT模型探究了大气污染物的来源.结果表明:从空间上,NO2柱浓度呈现出由甘肃东北区向西南区递减趋势,最高值主要分布于庆阳市全境和平凉市少部分地区.从2008~2014年NO2柱浓度值不断增长至最高值,高值区逐步扩大;2015~2018年NO2柱浓度值波动变化,呈现出向周围区域递减的趋势,高值区范围缩小;从时间上,2008~2018年对流层NO2柱浓度整体呈上升趋势,对流层NO2柱浓度四季均值分布为:夏季>春季>秋季>冬季;NO2柱浓度每年在6~8月达峰值,9月后开始下降,年内谷值出现在12月份~次年2月份;对研究区NO2柱浓度的贡献最大的是自然要素.高温、降水有利于土壤排放NO2,植被覆盖率对NO2起到一定的消减作用.利用HYSPLIT得出2009~2018年每年7月庆阳市NO2的外部输送路径,其中主要路径以陕西地区为主.  相似文献   

9.
近年来,有着致癌性质的甲醛在大气中的含量逐年增加,加强对大气甲醛及其影响因素的监测意义重大。本文利用OMI卫星反演数据,对2008~2016年甘肃省对流层甲醛柱浓度的时空特征以及影响因子进行分析。结果表明:(1)甘肃省甲醛柱浓度空间分布极其不平衡,呈现出由甘肃南部向中部、西北部逐渐降低的趋势,这与甘肃省自东南向西北的植被分布有关,植被排放对大气甲醛有一定的贡献。(2)甲醛柱浓度年均值最低为7.15×1015 molec/cm2,出现在2008年,最高为10.66×1015 molec/cm2,出现在2011年;按照季节划分甲醛柱浓度均值,表现为夏季 > 冬季 > 春季 > 秋季,这与夏季光化学反应和甘肃省冬季采暖有关;甘肃省大气中的甲醛以自然因素为主,人为因素次之。(3)甲醛柱浓度变化不仅与自然因素的温度呈显著正相关,还与社会经济因素中的第二产业值、工业产值以及能源消耗等具有一定相关性。甘肃省甲醛柱浓度时空特征总体受当地自然和社会经济因素的综合影响。  相似文献   

10.
文章利用OMI卫星全球对流层NO2垂直柱浓度Level3级产品数据,研究分析了河南省2006年-2015年大气对流层NO2垂直柱浓度时空变化规律.结果表明:河南省近10年大气对流层平均NO2柱浓度为15.38×1015 molec/cm2,远高于全国平均水平,但自2014年起出现了大幅回落;NO2柱浓度月均值具有对称性和周期性,最高值和最低值一般分别出现在1月和7月;NO2柱浓度的季节均值特征明显,具体表现为冬季>秋季>春季>夏季;河南省NO2柱浓度空间分布不均衡,自西南部至东北部逐渐增加,其中东北部为NO2浓度高值集中地区.  相似文献   

11.
广东省对流层HCHO柱浓度时空动态分布及影响分析   总被引:1,自引:0,他引:1  
本文基于OMI卫星遥感反演数据,结合趋势分析、残差分析及Hurst指数,对广东省2009—2018年对流层甲醛柱浓度时空分布特征进行了分析,并结合NDVI、工业总产值、汽车保有量等因素,进一步探究了广东省自然和社会要素结构变化与甲醛柱浓度变化的关系.结果表明,广东省近10年的甲醛柱浓度均值为15.365×1015 molec·cm-2,处于全国前列水平,且近10年来年际间浓度变化波动较大.研究发现,甲醛柱浓度四季变化较为明显,春季高、夏季低,且季节性增长较为明显,其中,春、秋、冬三季平均增幅达到15.5%;月际变化与季节变化较为一致,受自然因素影响较为强烈.空间变化主要表现为甲醛柱浓度值由西南往东北递增,其中,高值区分布在广东省的中部和东北部地区,低值区分布在南部和西南部地区;残差研究发现,人类活动依然是影响广东省甲醛分布的主要因素,占87.64%,影响因素主要包括规模以上企业数量、工业废气排放等经济发展要素,并与能源消耗总量及工业生产总值的增加密切相关.自然因素如气温、降水、NDVI对甲醛的生成和分布有促进作用.通过Hurst指数可以发现,未来广东省甲醛柱浓度整体呈下降的趋势,但部分地区如东莞、深圳市等地未来有增加的趋势.  相似文献   

12.
刘昊  王会祥 《环境科学》2013,34(9):3352-3357
2009年春季在福建南平市茫荡山地区进行观测,测量了.OH源O3、HONO、HCHO和H2O2的浓度.结果表明O3、HCHO、HONO、H2O2浓度分别为4.96×10-8、3.97×10-10、2.53×10-10、1.18×10-10,低于华北农村的浓度.利用CMAQ计算O3、HCHO、HONO、H2O2对.OH的贡献率,分别为57.0%、7.7%、34.9%、0.4%.O3光解是该地区最重要的.OH来源.O3、HCHO、H2O2对.OH的贡献呈现单峰变化,在12:00~13:00达到峰值.HONO对.OH的贡献曲线呈波动状,和人类居住环境清晨出现峰值的情况不同.  相似文献   

13.
为研究城市滨河公园景区地表积尘和周边绿地土壤重金属污染状况及潜在生态风险和健康风险,选择兰州市黄河风情线沿线的游园、广场和主题公园为研究区,分别采集了27个地表积尘和26个周边绿地表土样品.采用地累积指数(Igeo)、单因子污染指数(Pi)、内梅罗综合污染指数(PN)和改进的潜在生态风险指数(RI)评估Cr、 Ni、 Cu、 Zn、 As、 Cd、 Hg和Pb这8种重金属污染特征和潜在生态风险程度,并利用暴露风险模型进行健康风险评价.结果表明,研究区地表积尘和周边绿地土壤As含量的平均值略低于甘肃省土壤元素背景值,但地表积尘的其余元素均高于甘肃省和兰州市元素背景值,而周边绿地除Cr和Ni元素略低于甘肃省和兰州市的背景值之外,其余Cu、 Zn、 Cd、 Hg和Pb含量的平均值却高于两者的背景值.地累积指数和单因子污染指数显示,研究区地表积尘受到Cr、 Cu、 Zn、 Cd、 Hg和Pb的污染,沿途绿地土壤存在不同程度的Cu、 Zn、 Cd、 Hg和Pb的污染.内梅罗综合污染指数表明,研究区地表积尘和周边绿地土壤的综合污染程...  相似文献   

14.
基于DPeRS模型的海河流域面源污染潜在风险评估   总被引:4,自引:3,他引:1  
运用DPeRS(diffuse pollution estimation with remote sensing)模型对海河流域面源污染物的空间分布特征和污染来源进行遥感像元尺度解析,结合地表水质评价标准,构建了面源污染潜在风险分级方法,评估了海河流域面源污染潜在风险.结果表明:污染量上,海河流域总氮(TN)、总磷(TP)、氨氮(NH4+-N)和化学需氧量(COD)面源污染排放负荷分别为429.2、25.7、288.3和1017.0 kg ·km-2,入河量分别为2.5万t、1597.2 t、1.7万t和6.6万t;污染类型上,农田径流是海河流域最主要的氮磷型(TN、TP和NH4+-N)面源污染源,对于COD指标,城镇生活是首要污染类型,其次为畜禽养殖;空间分布上,海河流域中部和南部地区面源污染负荷较高,此区域也是该流域面源污染高风险集中分布区,氮磷型面源污染高风险区域分布相对较为集中,化学需氧量型则较为零散;海河流域有36%以上的区域存在氮磷型面源污染风险,有2.94%的区域存在化学需氧量型面源污染风险.  相似文献   

15.
城市生态系统污染氮足迹与灰水足迹综合评价   总被引:1,自引:0,他引:1  
水足迹和氮足迹指标的运用可定量分析人类水资源与氮元素消费对环境造成的影响,但联合双足迹指标评价城市发展对环境造成的多重负效应的研究尚缺.基于污染氮足迹及灰水足迹理论与内涵,以城市化程度较高的深圳市为例,分别对其城市污染氮足迹及灰水足迹进行核算与评价,综合评估城市快速发展导致的氮污染与水污染潜在风险的耦合关系.结果表明:2005—2015年深圳城市污染氮足迹呈波动下降趋势,年均约3万t.水体活性氮流失为主要的城市污染氮足迹来源.同时,深圳城市灰水足迹却呈波动上升趋势,年均约15亿m~3,生活灰水足迹为城市灰水足迹主要构成部分,也是城市剩余灰水足迹的主要来源.研究期间,城市污染氮足迹与灰水足迹呈协同变化趋势,但2012年后两者出现"脱耦"情况.城市污水处理能力与再生水利用率为影响未来深圳城市灰水足迹增加的主要因素,优先快速提高城市生活污水再生利用率和全面提高城市污水脱氮率,可应对城市发展过程水资源与氮元素利用带来的环境风险.  相似文献   

16.
基于OMIHCHO数据日产品,对2016年全国甲醛柱浓度数据进行了提取分析,并结合全国各省市温度、降雨量、植被覆盖度、人类活动等数据,在空间上与甲醛柱浓度做了相关性分析.结果表明:我国甲醛柱浓度空间分布极不平衡,呈现出东部及东南部地区甲醛柱浓度值普遍较高,而我国的西部及西北部地区表现出较低值;甲醛柱浓度月均值最低为8.31×1015molec/cm2,出现在10月份,最高为11.87×1015molec/cm2,出现在6月份,如果按照季节划分甲醛柱浓度均值,夏季 > 春季 > 冬季 > 秋季;从气象因子与甲醛柱浓度相关性分析结果来看,温度与甲醛柱浓度之间的相关性更为密切,但表现出空间上的差异性,此外,雨水对甲醛有一定的消除作用,但也在空间上有差异;由植被与甲醛柱浓度相关性结果来看,植被主要对东部及东南部地区甲醛柱浓度影响作用明显.甲醛柱浓度与各省市的地区生产总值、各产业增加值、机动车保有量的变化也存在着明显的相关性,而各产业增加值中工业与其相关性最高,说明工业排放和汽车尾气也是甲醛的主要来源.  相似文献   

17.
甲醛(HCHO)是大气光化学重要污染物之一,为研究西南地区郊区大气夏季甲醛污染特征选取了四川省成都市新津区进行大气甲醛观测,结合NOx、O3、PAN、J-value、温湿度、风速风向、天气数据进行分析.观测期间成都市新津区夏季甲醛浓度为0.76×10-9~12.50×10-9V/V),均值为3.47×10-9±2.05×10-9V/V),呈现明显的日变化规律.结合数据分析可知,一次人为排放源在成都郊区夏季日间甲醛贡献中占比较低.观测期间甲醛受光照的影响较大,与O3、PAN、J-value普遍呈现一致的变化规律,因此成都市夏季日间甲醛主要来源为甲醛前体物的二次光化学反应.  相似文献   

18.
基于OMI卫星遥感反演数据,对珠江三角洲地区2009年~2016年对流层甲醛柱浓度时空分布特征及其影响因素进行研究.结果表明,珠江三角洲甲醛柱浓度时间变化特征为:8年来呈波动变化趋势,年均值为13.11×1015 molec/cm2,最低值出现于2012年,最高值出现于2016年;最大降低率为5.8%,最大增长率为6.3%.每年夏季最高,冬季最低,大小依次为夏季 > 秋季 > 春季 > 冬季,8a来96个月甲醛月际变化幅度较大,呈单峰结构,其中每年6月最高;空间变化特征为:甲醛柱浓度值由西北往东南递减,其中以肇庆东北大部、佛山北部和广州西部组成高值区分布中心,以佛山中南部、广州东南半部和江门西北半部组成三级次高级分布区,以惠州、东莞、深圳、中山、珠海和江门等珠江三角洲近海岸地区为一二级低值浓度区;影响因素中气温与气压等气象因素对HCHO的生成和分布有着促进作用,植被对HCHO的产生有一定的贡献,甲醛柱浓度的变化与汽车保有量、地区生产总值等经济发展要素呈现正相关关系,能源消耗总量与工业废气排放总量的增加与甲醛柱浓度增长密切相关,人为因素是甲醛柱浓度变化的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号