首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
陈亚  印雯  张星星  张钰  宋吟玲  吴鹏  徐乐中 《环境科学》2020,41(5):2367-2372
采用厌氧折流板反应器与完全混合反应器(ABR-CSTR)组合的一体式工艺作为试验载体,在连续流的运行条件下,针对低碳高氨氮(NH~+_4-N≥200mg·L~(-1))污水,将不同隔室内的普通厌氧污泥驯化培养为分别具有反硝化除磷、部分亚硝化和厌氧氨氧化功能,以实现三者功能的耦合.A4(CSTR)段通过限氧(DO=0.8 mg·L~(-1))和间歇曝气(曝∶停比=30 min∶30 min)的方式经过30 d成功实现部分亚硝化的启动.随后进一步采取缩短水力停留时间(HRT)的方式实现部分亚硝化的稳定运行,为厌氧氨氧化提供了NO~-_2-N/NH~+_4-N为1.0~1.1的稳定进水基质.A5和A6隔室运行154 d后实现了厌氧氨氧化功能, NH~+_4-N和NO~-_2-N的去除率分别为94%和97%,其出水中NO~-_3-N浓度稳定在22 mg·L~(-1)左右.A1~A3隔室利用回流中的NO~-_x-N作为电子受体成功实现了反硝化除磷功能,PO~(3-)_4-P的去除率为77%.一体式工艺经过175d成功耦合,实现了碳、氮和磷的同步高效去除.  相似文献   

2.
采用分体式厌氧氨氧化反应装置,以短程硝化-厌氧氨氧化工艺为研究对象,通过改变基质浓度探究其对工艺固碳潜力的影响,寻找最佳固碳量的运行工况;通过收集反应器运行各阶段的污泥样品,对其中的微生物种群多样性进行分析,确定工艺的固碳微生物。试验结果表明:确定进水中NH~+_4-N浓度为180 mg/L时,工艺展现出最佳的固碳能力;短程硝化阶段,当进水中NLR为0.44 kg-N/(m~3·d~(-1))、HRT为10 h时,固碳量为0.285 mg/mg-N;厌氧氨氧化阶段,当进水中NH~+_4-N和NO~-_2-N浓度分别为75 mg/L、95 mg/L,HRT为24 h、NLR为0.13 kg-N/(m~3·d~(-1))时,固碳量为0.16 mg/mg-N。微生物种群多样性分析表明:短程硝化反应器中的优势菌种为Acidobacteria Bacteria(酸杆菌)、Chlorobi(绿菌)、Proteobacteria Bacteria(变形杆菌);厌氧氨氧化反应器中的优势菌种为Planctomycete Bacteria(浮霉菌)、Actinobacteria Bacteria(放线菌)、Proteobacteria Bacteria(变形杆菌)。  相似文献   

3.
单质硫自养短程反硝化耦合厌氧氨氧化强化脱氮   总被引:1,自引:0,他引:1  
通过在厌氧氨氧化(ANAMMOX)连续流反应器中添加单质硫,试图引入单质硫自养短程反硝化(short-cut S~0-SADN)来强化ANAMMOX过程中NO~-_3-N的去除.在温度为(33±2)℃,pH为7.8~8.2条件下,探讨不同的进水NH~+_4-N/NO~-_2-N比对耦合系统中氮素转化以及NO~-_2-N竞争特性的影响.结果表明,在不同的进水NH~+_4-N/NO~-_2-N比(1∶1.3、 1∶1.5、 1∶1和1∶1.1)下,耦合系统的TN平均去除率分别达到了96.78%、 97.21%、 94.68%和97.72%,均远远大于ANAMMOX理论TN最高去除率89%.其中,在进水NH~+_4-N/NO~-_2-N比为1∶1或1∶1.1条件下,耦合系统能够实现单质硫自养短程反硝化耦合ANAMMOX深度脱氮的稳定运行.在最佳进水NH~+_4-N/NO~-_2-N比1∶1.1、NH~+_4-N和NO~-_2-N浓度分别为240mg·L~(-1)和265mg·L~(-1)条件下,TN去除速率达到1.50kg·(m~3·d)~(-1),ANAMMOX和S~0-SADN途径的TN去除率分别稳定在(95.68±1.22)%和(2.04±0.77)%.在整个运行过程中,ANAMMOX在底物NO~-_2-N的竞争过程中一直占据着绝对的优势,ANAMMOX菌的活性(以NH~+_4-N/VSS计)稳定在(0.166±0.008)kg·(kg·d)~(-1).  相似文献   

4.
采用上行流人工快渗处理系统(CRI),接种好氧硝化污泥与异养反硝化污泥的混合污泥(体积比为1∶2),考察了低进水基质(NH~+_4-N、NO~-_2-N)浓度下启动厌氧氨氧化的可行性及稳定运行期间的菌群结构特征。结果表明:系统运行92 d后可成功实现厌氧氨氧化启动,稳定运行期NH~+_4-N、NO~-_2-N、TN平均去除率分别为98.1%、98.6%、91.5%。生物膜中血红素的含量随运行时间的增加而逐渐升高,运行至92 d时达(1.21±0.02)μmol/g,相对应的比厌氧氨氧化活性为(95.13±0.95) mg/(g·d)。从稳定运行的厌氧氨氧化系统5个不同高度滤料层共检出45个门、127个纲、322个属,其中Candidatus Brocadia在脱氮功能菌属中以1.25%~5.33%的相对丰度占绝对优势,为厌氧氨氧化去除NH~+_4-N、NO~-_2-N提供了基础。  相似文献   

5.
研究HRT(水力停留时间)对改良式A~2/O-BAF双污泥系统反硝化除磷脱氮的影响.进水COD、NH~+_4-N和TP分别为189.6、 60.4和5.1mg·L~(-1),HRT分别为9、 8、 7和6 h时,COD出水平均浓度均小于42mg·L~(-1),NH~+_4-N出水平均浓度分别为2.4、 2.8、 3.3和6.5mg·L~(-1),TP出水平均浓度分别为0.3、 0.4、 0.7和0.8mg·L~(-1);系统缺氧段反硝化聚磷菌占聚磷菌的比例(DPAOs/PAOs)从76.8%递减到48.8%;HRT为8 h时,通过数理统计方法得出反硝化除磷脱氮比(ΔPO~(3-)_4/ΔNO~-_3-N)的概率密度高达37.5%,缺氧段ΔPO~(3-)_4/ΔNO~-_3-N为1.24(理论值1.41),此时反硝化脱氮除磷效果最佳;在整个试验过程中SVI值均低于100 mL·g~(-1),而MLVSS/MLSS从0.74逐渐下降到0.63,表明污泥活性逐渐降低.  相似文献   

6.
周同  于德爽  李津  吴国栋  王骁静 《环境科学》2017,38(12):5162-5168
采用ASBR反应器通过改变单一基质浓度分别研究了NH_4~+-N和NO_2~--N对海洋厌氧氨氧化菌脱氮效能的影响及其动力学特性.结果表明,保持进水NO_2~--N为105.6 mg·L~(-1),当进水NH_4~+-N浓度提高至1 200 mg·L~(-1)时,海洋厌氧氨氧化反应器仍保持较好的脱氮能力,未受到明显的抑制作用,NO_2~--N的去除率稳定在80.70%左右;当进水NO_2~--N浓度提高至265.6mg·L~(-1)时,反应器开始受到明显的抑制作用,NH_4~+-N的去除率下降至63.01%左右,随着进水NO_2~--N浓度继续提高至305.6mg·L~(-1)时,NH_4~+-N的去除率进一步下降至43.93%左右.利用Haldane模型和Aiba模型拟合NH_4~+-N和NO_2~--N抑制作用的动力学特性,得到了NRRmax、KS、Ki这3个动力学参数及出水基质浓度与总氮容积负荷(TNRR)之间的关系,根据进一步分析可知,Haldane模型更适合描述NH_4~+-N抑制作用下的动力学特性,Aiba模型更适合描述NO_2~--N抑制作用下的动力学特性,并得到NH_4~+-N和NO_2~--N的出水抑制浓度分别为3 893.625 mg·L~(-1)和287.208 mg·L~(-1),为海洋厌氧氨氧化菌处理含海水污水提供了理论依据.  相似文献   

7.
硫自养反硝化耦合厌氧氨氧化脱氮条件控制研究   总被引:6,自引:4,他引:2  
周健  黄勇  刘忻  袁怡  李祥  完颜德卿  丁亮  邵经纬  赵蓉 《环境科学》2016,37(3):1061-1069
采用全混式厌氧搅拌罐,研究自养条件下,厌氧氨氧化与硫自养反硝化共同存在时,前者对系统中硫酸盐的产生和碱度消耗的影响.投加单质硫颗粒50 g·L~(-1),接种厌氧氨氧化颗粒污泥100 g·L~(-1)(湿重),控制温度35℃±0.5℃,搅拌强度120r·min-1,p H为8.0~8.4.启动硫自养反硝化阶段,进水硝酸盐浓度为200 mg·L~(-1),水力停留时间为5.3 h,反应器硝态氮负荷达0.56~0.71 kg·(m~3·d)~(-1).硫自养反硝化耦合厌氧氨氧化反应过程中,添加60 mg·L~(-1)氨氮后,硝态氮负荷仍维持在0.66~0.88kg·(m~3·d)~(-1),氨氮负荷为0.27 kg·(m~3·d)~(-1).反应体系内单位硝酸盐转化产生的硫酸盐Δn(SO~(2-)_4)∶Δn(NO~-_3)由1.21±0.06降低至1.01±0.10,Δ(IC)∶Δ(NO~-_3-N)由0.72±0.1降低至0.51±0.11,出水p H值由6.5上升至7.2.序批试实验优化反应条件:在搅拌强度G_T值为22~64 s~(-1),p H值为8.08时,耦合反应Δn(NH~+_4)∶Δn(NO~-_3)最高达到0.43,硝酸盐转化速率提升60%,过高搅拌强度(搅拌速度G_T值64 s~(-1))、不适宜的p H值(最适p H值为8.02)环境都会起同步转化效率的降低.  相似文献   

8.
许静怡  杜俊  杨一烽  吕锋  夏四清 《环境科学》2018,39(8):3767-3774
分别采用SBR反应器和MBR反应器驯化培养亚硝化污泥和厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)污泥,并通过微生物包埋技术将两类污泥分别包埋,构建亚硝化-厌氧氨氧化(partial nitrification-ANAMMOX,PN/A)双菌层系统.短期实验证明该系统中亚硝化菌(ammonia oxidizing bacteria,AOB)和ANAMMOX菌在不同阶段分别起主导作用,维持系统的酸碱平衡,并实现NH+4-N的高效去除(98.8%).长期实验表明,在溶解氧受限时,PN/A双菌层系统能够有效提高系统对溶解氧的利用效率,并增强系统的稳定性和脱氮效能.在溶解氧为1.0 mg·L~(-1),进水NH+4-N质量浓度分别为200 mg·L~(-1)和400 mg·L~(-1)时,对照组脱氮效率仅为58.1%和61.4%,而PN/A双菌层系统脱氮效率均稳定在80%左右;溶解氧为3.0mg·L~(-1),进水NH+4-N质量浓度为400 mg·L~(-1)时,PN/A双菌层系统总氮去除率达87.9%,总氮积累负荷(NLR)为0.4kg·(m3·d)-1,总氮去除负荷(NRR)为12.8 mg·(g·h)-1.  相似文献   

9.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

10.
祖波  马兰  刘波  卢培利  许君 《环境科学》2018,39(8):3937-3945
通过接种厌氧氨氧化污泥到微生物燃料电池阳极,成功启动厌氧氨氧化微生物燃料电池(ANAMMOX-MFC),研究了葡萄糖和苯酚对ANAMMOX-MFC脱氮产电性能的影响.结果表明,当葡萄糖浓度较低时(100~200 mg·L~(-1))时,对ANAMMOX菌有促进作用,ANAMMOX-MFC脱氮产电性能增强,此时反应器进出水COD浓度变化不大;当葡萄糖浓度高于300 mg·L~(-1)时,产电性能逐渐下降,NH+4-N去除率和去除速率逐渐下降,而NO-2-N去除率和去除速率基本保持不变,此时出水COD浓度也出现降低,说明厌氧氨氧化菌活性受到抑制,反硝化菌活性开始增强.极化曲线拟合程度较低,COD浓度变化对电池内阻影响较小.当苯酚浓度较低时(50~100 mg·L~(-1)),对ANAMMOX-MFC脱氮产电性能影响较低;当苯酚浓度超过200 mg·L~(-1)时,ANAMMOX-MFC脱氮产电性能逐渐被抑制.整个过程进出水COD浓度变化不大,极化曲线拟合程度较低,表观内阻有缓慢升高.  相似文献   

11.
制革废水的厌氧氨氧化ABR脱氮工艺研究   总被引:4,自引:4,他引:0  
曾国驱  贾晓珊 《环境科学》2014,35(12):4618-4626
采用小试规模的厌氧折流板反应器(ABR)研究制革废水的厌氧氨氧化脱氮.结果表明,ABR可作为实现厌氧氨氧化的良好反应器,厌氧氨氧化ABR反应器能有效和稳定地处理制革废水.当进水NH+4-N为25.0~76.2 mg·L-1、COD为131~237 mg·L-1,NH+4-N容积负荷为0.05~0.15 kg·(m3·d)-1时,出水NH+4-N为0.20~7.12 mg·L-1、COD为35.1~69.2mg·L-1,去除率分别达到90.8%~99.6%和66.9%~74.7%.此外,厌氧氨氧化ABR反应器污泥在驯化和运行过程中形成了棕红色、棕黄色和红色的颗粒污泥.电镜扫描观察证实在厌氧氨氧化ABR反应器的4个隔室的颗粒污泥中均存在厌氧氨氧化菌.荧光原位杂交(FISH)检测结果显示厌氧氨氧化菌在驯化和运行过程中出现不同程度的增殖,厌氧氨氧化ABR反应器4个隔室的污泥中厌氧氨氧化菌所占比率分别由4%增加到9%、8%、12%和30%,呈现出前段隔室少、后段隔室多的分布规律.  相似文献   

12.
苯酚对厌氧氨氧化污泥脱氮效能长短期影响   总被引:5,自引:4,他引:1  
杨朋兵  李祥  黄勇  朱亮  崔剑虹  徐杉杉 《环境科学》2015,36(10):3771-3777
通过接种厌氧氨氧化(ANAMMOX)污泥,研究了苯酚浓度对ANAMMOX污泥脱氮效能长短期影响.短期结果表明,随着苯酚浓度的增大,氮去除率快速下降.当苯酚浓度大于600 mg·L-1时,NH+4-N的去除率降低到6%以下,TN的去除率只有10%左右.长期实验结果表明,当苯酚浓度小于100 mg·L-1时,NH+4-N的去除率都能达到99%以上,说明低浓度苯酚对ANAMMOX菌有一个驯化的过程.当苯酚浓度高于400 mg·L-1时,NH+4-N的去除率只有23.59%,TN去除率只有50.3%,ANAMMOX污泥抑制明显,与短期结果相同.此时反硝化菌活性明显高于ANAMMOX菌,说明苯酚可作为有机碳源诱发体系中发生反硝化反应,最终导致反硝化菌在体系中占据主导地位.但高浓度(1 000 mg·L-1)苯酚对反硝化菌也具有抑制作用.通过拟合得到苯酚对ANAMMOX半抑制有效浓度(IC50)为71.57 mg·L-1.经过18 d的恢复后,NH+4-N去除率基本恢复,但氮素之间的转化计量式发生了改变,ρ(NH+4-N)去除/ρ(NO-2-N)去除/ρ(NO-3-N)生成为1∶0.86∶0.2.研究结果表明,将苯酚控制在合理范围内可以使反应器达到同步脱氮除酚的效果.  相似文献   

13.
污泥厌氧产酸发酵液作碳源强化污水脱氮除磷中试研究   总被引:7,自引:6,他引:1  
为研究城市污泥厌氧产酸发酵液作为补充碳源强化生活污水脱氮除磷系统的效果和可行性,建造了一个总有效体积为4 660 L的A2/O中试反应系统,以实际城市污水为研究对象,考察了添加污泥产酸发酵液后的污水脱氮除磷效果并和单纯添加乙酸作碳源的效果进行了比较.结果表明,在进水COD为243.7 mg·L-1、NH+4-N为30.9 mg·L-1、TN为42.9 mg·L-1、TP为2.8 mg·L-1、硝化液回流比为200%和污泥回流比为100%的条件下,向缺氧池中投加乙酸能增强系统脱氮除磷效果,反应器的最佳进水流量和投加碳源SCOD增量分别为7 500 L·d-1和50 mg·L-1.污泥发酵液代替乙酸作为外加碳源时的平均出水COD、NH+4-N、TN和TP去除率分别为81.60%、88.91%、64.86%和87.61%,相对应的出水浓度分别为42.18、2.77、11.92和0.19 mg·L-1,满足我国《城镇污水处理厂污染物排放标准》GB 18918-2002所规定的一级A标准.结果表明,投加污泥产酸发酵液作为脱氮除磷碳源可达到和乙酸同样的效果,具有实际可行性,这为城市污泥处理处置实现资源化提供了一条新的可行途径.  相似文献   

14.
为了考察不同污泥浓度(MLSS)下缺氧游离亚硝酸(FNA)对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的抑制影响,采用序批式反应器(SBR),基于4种MLSS(8 398、11 254、15 998和19 637 mg·L~(-1))的全程硝化污泥条件下,通过批次试验深入研究4种MLSS下的全程硝化活性污泥经过缺氧FNA(初始浓度为1. 3 mg·L~(-1))处理48 h后,AOB和NOB活性的变化情况.结果表明,缺氧FNA处理活性污泥48 h后,p H值升高0. 9左右,NO2--N浓度并未明显下降;过曝气下,NH4+-N浓度逐渐降解至0 mg·L~(-1),NH4+-N去除速率逐渐升高至4. 4~6. 8 mg·(L·h)-1,并随着抑制MLSS的升高,其所用时越短;抑制MLSS为8 398、11 254、15 998和19 637 mg·L~(-1)时,分别过曝气0~396、0~396、0~372和0~168 h内,亚硝酸盐累积率(NAR)均大于92%,当分别曝气至468、468、444和264 h时,NO2--N浓度和NAR分别降为0 mg·L~(-1)和0%,NO3--N浓度均升高至最高,其值分别为42. 6、49. 9、42. 9和47. 9 mg·L~(-1).  相似文献   

15.
污泥水热液化水相产物中氮元素变化规律的研究   总被引:1,自引:0,他引:1  
孙衍卿  孙震  张景来 《环境科学》2015,36(6):2210-2215
亚临界水直接液化是实现污泥资源化的一种潜在手段.针对污泥亚临界水热液化水相产物中氮元素的变化规律进行了系统地研究.结果表明,在研究的反应温度和反应时间范围内,水相产物中总氮的质量浓度ρ(TN)在2 867.62~4 171.30mg·L-1之间变化,氮的主要存在形态为氨氮(NH+4-N)和有机氮(Org-N),其中NH+4-N占54.6%~90.7%,Org-N占7.4%~44.5%,ρ(NO-3-N)远远低于ρ(NH+4-N)及ρ(Org-N).反应温度是影响氮元素含量的重要因素,相同反应时间下ρ(TN)和ρ(Org-N)随反应温度的升高而降低.随反应时间的延长,ρ(TN)和ρ(Org-N)逐渐增加,而ρ(NH+4-N)则呈现出先增加,后平稳,再些许减少的趋势.  相似文献   

16.
白洋淀沉积物氨氮释放通量研究   总被引:10,自引:3,他引:7  
白洋淀沼泽化趋势不断加重,本文分析了沉积物氨氮释放风险与水质效应,评估沉积物中氨氮交换通量对上覆水体水质产生的重要影响.结果表明:白洋淀淀区表层水氨氮(NH_4~+-N)平均浓度在0.0~0.49 mg·L~(-1)之间,硝氮(NO_3~--N)平均浓度维持在0.09~0.20 mg·L~(-1),总氮(TN)浓度范围为1.40~4.52 mg·L~(-1),淀区水质在V类水平和劣V类水平.沉积物NH_4~+-N的平均含量在61.1~160.6 mg·kg~(-1),NO_3~--N含量整体平均值较低,范围在4.3~9.0 mg·kg~(-1),TN含量平均值在1555~4400 mg·kg~(-1)之间.整个白洋淀淀区表层沉积物孔隙水中NH_4~+-N浓度明显高于上覆水浓度,NH_4~+-N存在从沉积物向上覆水释放的风险.淀区沉积物-水界面潜在NH_4~+-N扩散通量范围为-9.3~38.3 mg·m~(-2)·d~(-1),NH_4~+-N潜在内源释放风险非常高.烧车淀区、南刘庄区、圈头区的潜在NH_4~+-N平均释放通量达到10.0 mg·m~(-2)·d~(-1)以上.为了避免白洋淀沼泽化过程加快,水质氮污染需要采取相应措施进行有效控制,而控制沉积物NH_4~+-N的内源释放是其中的关键环节.  相似文献   

17.
斯林林  周静杰  吴良欢  胡兆平 《环境科学》2018,39(12):5383-5390
在太湖流域,通过田间试验研究了控释肥(CRF)、生物炭配施控释肥(BC+CRF)、生物炭配施稳定性肥(BC+SF)、生物炭配施控释肥和稳定性肥(BC+CRF+SF)4种施肥处理对稻田田面水p H、氮素动态变化、氮素径流流失的影响.结果表明,田面水平均p H介于5.64~8.15,生物炭配施控释肥和稳定性肥田面水p H降低3.16%~4.48%.田面水平均全氮(TN)质量浓度介于19.05~25.23 mg·L~(-1),生物炭配施控释肥和稳定性肥田面水TN质量浓度显著降低4.75%~6.58%.田面水无机氮素以铵态氮(NH_4~+-N)为主,NH_4~+-N和硝态氮(NO_3~--N)平均质量浓度分别介于0.01~17.26 mg·L~(-1)和0.24~3.11mg·L~(-1).与单施控释肥相比,各处理田面水NH_4~+-N和NO_3~--N质量浓度分别显著降低35.89%~48.78%和20.54%~37.01%.生物炭配施稳定性肥显著降低了田面水NH_4~+-N和NO_3~--N质量浓度,有效减少无机氮素径流流失风险.TN、NH_4~+-N、NO_3~--N径流流失量分别介于16.24~18.09、1.76~2.22、0.76~1.38 kg·hm~(-2).与单施控释肥相比,各处理TN、NH_4~+-N、NO_3~--N径流流失均有不同程度削减.生物炭配施控释肥和稳定性肥显著削减了氮素径流流失,有效降低区域稻田氮素面源污染风险.  相似文献   

18.
硫酸盐/氨的厌氧生物转化试验研究   总被引:5,自引:5,他引:0  
张丽  黄勇  袁怡  李祥  刘福鑫 《环境科学》2013,34(11):4356-4361
采用厌氧上流式生物膜反应器,通过控制不同的水力停留时间、进水n(NH+4-N)/n(SO2-4-S)和HCO-3浓度研究了无机营养条件下硫酸盐/氨的厌氧生物转化特性.结果表明,反应器中NH+4和SO2-4发生了同步去除,最大NH+4-N和SO2-4-S去除速率分别为47.6 mg·(L·d)-1和16.9 mg·(L·d)-1,稳定去除率最高分别超过了80%和43%;反应过程中有NO-3-N的明显生成,出水NO-3-N浓度最大时为77.6 mg·L-1,整个过程中,未检测到S2-的生成,有单质硫附着在生物污泥表面;由于控制条件的不同,会产生不同的n(NH+4-N)/n(SO2-4-S)转化比,表明NH+4和SO2-4的厌氧生物反应并不是简单地接续反应,反应器中存在更为复杂的反应过程和转化途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号