首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
生物炭对塿土土壤温室气体及土壤理化性质的影响   总被引:23,自引:12,他引:11  
通过田间小区试验,分别向塿土土壤中添加0、20、40、60、80 t·hm~(-2)的苹果果树枝条生物炭后,分析了生物炭对土壤温度、土壤团聚体、NO_3~--N、NH_4~+-N、微生物量碳以及土壤温室气体排放的影响.结果表明,生物炭可以缓解土壤温度的变化,增加土壤大团聚体的数量,尤其是5 mm、5~2 mm和1~0.5 mm的团聚体数量.与对照相比,随着生物炭施用量的增加,土壤NO_3~--N、NH_4~+-N、微生物量碳分别增加了4.9%~33.9%、9.1%~41.1%和11.8%~38.5%.本研究中生物炭对土壤温室气排放的影响主要表现为:添加生物炭后,土壤CO_2的排放量以及CH_4的吸收汇分别增加了6.73%~23.35%和3.62%~14.17%;施用20 t·hm~(-2)和40 t·hm~(-2)的生物炭降低了土壤N_2O的排放和综合增温潜势(GWP),而当生物炭施用量大于等于60 t·hm~(-2)时反而增加了土壤N_2O的排放和综合增温潜势(GWP).说明生物炭作为一种土壤改良剂和碳减排剂,能够改善土壤质量,提高土壤肥力,提高农田土壤增汇减排的作用,此外,选择合适的生物炭施用量至关重要.  相似文献   

2.
多年施用生物炭对河南烤烟种植区土壤呼吸的影响   总被引:7,自引:3,他引:4  
为探究生物炭施用对土壤呼吸的影响,采用5 a定位试验(2013~2017年)研究了不施生物炭(CK)、施用1. 5 t·hm-2生物炭(T1)、施用15 t·hm-2生物炭(T2)、施用45 t·hm-2生物炭(T3)这4种处理下土壤呼吸及土壤水热因子的动态变化规律.结果表明:(1)在土壤中连续5a施入中剂量生物炭(T2:15 t·hm-2)显著降低了烤烟生长季土壤呼吸速率,降幅为25. 89%;当施入量增至45 t·hm-2(T3)时土壤呼吸速率显著增加,增幅为21. 48%(P 0. 05).(2)长期中剂量生物炭的添加显著降低了土壤异养呼吸速率和自养呼吸速率,降幅分别为29. 80%和28. 75%;大剂量生物炭(T3:45 t·hm-2)的施入显著增加了土壤异养呼吸速率,增幅为28. 88%.低剂量生物炭(T1:1. 5 t·hm-2)和中剂量生物炭均显著增加土壤呼吸中自养呼吸的比例,大剂量生物炭的施入显著增加了异养呼吸的比例(P 0. 05).(3)低剂量生物炭显著降低了烤烟生长季土壤5 cm温度;大剂量生物炭显著降低了土壤5 cm湿度.土壤呼吸与土壤5 cm温度之间呈显著指数相关,与土壤5 cm湿度之间未表现出显著相关(P 0. 05).综上,连续5a低剂量生物炭的施用对土壤呼吸无影响,适量生物炭的施用具有固碳减排效应,大剂量生物炭施用则会适得其反,建议生物炭施用范围应控制在15 t·hm-2以内.  相似文献   

3.
施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响   总被引:19,自引:1,他引:18  
生物炭是一种重要的土壤改良剂,为深入研究其对云南烟区红壤团聚体组成及有机碳分布的作用,开展了为期3年的生物炭田间定位试验.试验共设3个处理,分别为常规施肥(B0)、常规施肥配施生物炭15 t·hm-2(B15)、常规施肥配施生物炭30 t·hm-2(B30).结果表明:1随着生物炭施用年限和施用量的增加,土壤有机碳含量显著增加,B15和B30处理较对照(B0)分别增加了38.7%和60.1%;2施用生物炭显著提高了土壤各粒级团聚体有机碳含量,其中B30处理增幅最大.在不同粒级团聚体中0.25~2 mm团聚体有机碳含量增幅最大,与对照相比,B15和B30处理分别增加了24.9%和36.4%;3施炭处理(B15,B30)土壤团聚体平均重量直径(MWD)、几何平均直径(GMD)和大于0.25 mm团聚体数量(R0.25)也较对照显著增加,表明土壤团聚体稳定性显著提高;4连续施用生物炭3年后,大团聚体有机碳的贡献率明显升高,而微团聚体则相反.综上所述,生物炭对土壤团聚体和有机碳的作用过程是持续的,连续施用生物炭可显著提升土壤大团聚体含量、团聚体稳定性、土壤和各粒级团聚体的有机碳含量,在改善土壤物理性状的同时,有利于稳定增加土壤碳汇.  相似文献   

4.
生物质炭对果园土壤团聚体分布及保水性的影响   总被引:16,自引:4,他引:12  
安艳  姬强  赵世翔  王旭东 《环境科学》2016,37(1):293-300
向土壤中施用生物质炭是增加碳吸存和改善土壤理化性质的一种重要途径.利用干筛法获得土壤不同级别团聚体,探究了果园施用不同水平、不同性质生物质炭对土壤团聚体分布及其有机碳含量、土壤孔隙度和田间持水量的影响.结果表明,与不施生物质炭的处理(CK)相比,施用生物质炭在0~10 cm土层主要减少了土壤5~8 mm、0.25 mm团聚体含量,增加了1~2 mm、2~5 mm级别团聚体含量,其中1~2 mm团聚体随生物质炭施用量增加而显著增加.施用生物质炭使0~10cm土层土壤团聚体的平均质量直径有所减小,稳定性降低.与CK相比,添加生物质炭显著增加了土壤团聚体中有机碳含量,其中1~2 mm团聚体有机碳提高幅度最大,达70%以上.施用生物质炭显著提高了1 mm级别团聚体的吸湿系数,增加了土壤总孔隙度和田间持水量.  相似文献   

5.
生物炭和有机肥对华北农田盐碱土N2O排放的影响   总被引:3,自引:0,他引:3  
基于山东滨州地区冬小麦-夏玉米轮作大田试验,探究了施用生物炭和有机肥对夏玉米季土壤氧化亚氮(N_2O)排放的影响,为盐碱土壤N_2O增汇减排提供理论依据.试验按照不同处理氮、磷、钾含量相同原则,设置对照CK[N:0.2t·(hm~2·a)~(-1),P_2O_5:0.12 t·(hm~2·a)~(-1),K_2O:0.2 t·(hm~2·a)~(-1)]、C1[5 t·(hm~2·a)~(-1)生物炭]、C2[10 t·(hm~2·a)~(-1)生物炭]、C3[20 t·(hm~2·a)~(-1)生物炭]、M1[7.5 t·(hm~2·a)~(-1)有机肥]、M2[10 t·(hm~2·a)~(-1)有机肥]这6个处理.结果表明,施加生物炭和有机肥对土壤N_2O排放影响趋势基本一致,排放高峰均出现在施肥(基肥和追肥)后,累积排放量占整个生育期排放量的近一半;与CK相比,C1、C2分别降低N_2O排放的45.3%、31.6%,而C3、M1、M2分别增加了17.3%、37.4%、27.6%.施加生物炭和有机肥均会对土壤N_2O排放产生影响,施加生物炭可以降低N_2O排放,而施加有机肥则促进了N_2O排放.因此,生物炭对减少农田N_2O排放具有巨大潜力.  相似文献   

6.
土壤微生物代谢对土壤养分循环和生态系统的稳定至关重要.为明确施加生物炭对土壤微生物代谢养分限制和碳利用效率(carbon use efficiency, CUE)的长效影响机制,于2012年将果树树干、枝条生物炭(450℃、限氧条件下裂解)以不同用量(0、 20、 40、 60和80 t·hm~(-2))施入塿土,与耕层土壤(0~20cm)混匀,小麦玉米轮作7 a后,通过生态酶化学计量学对土壤微生物代谢养分限制特征进行了定量分析和比较.结果表明:①随生物炭施用量的增加,土壤含水量、有机碳、全氮、碳氮比、碳磷比和氮磷比显著提高,碳氮磷活性组分、微生物生物量碳氮磷和总磷未表现出明显的规律性,而5种胞外酶活性(β-1,4-葡萄糖苷酶、纤维素酶、亮氨酸氨基多肽酶、β-1,4-N-乙酰氨基葡萄糖苷酶和磷酸酶)显著降低.②所有处理土壤微生物均受磷限制;在施加生物炭各处理中,随施用量的增加微生物代谢碳和磷限制显著提高,微生物CUE显著降低;当生物炭施用量为20 t·hm~(-2)时,碳限制(0.625±0.022)和磷限制(62.153°±0.892°)最低,微生物CUE(0.511±0.007)最高.③偏最小二乘路径建模分析表明,土壤碳氮磷及其元素化学计量比对磷限制产生了直接的极显著正效应(P0.01),碳限制与磷限制呈正相关关系(R~2=0.242,P0.001),而碳磷限制又对CUE产生了极显著的负效应(P0.001).综上,过量施用生物炭使土壤元素化学计量失衡是导致土壤微生物代谢磷限制加剧的重要因素,继而诱导了微生物碳限制的增强和CUE的降低.当生物炭施加量为20 t·hm~(-2)时,微生物代谢所受碳磷限制最低,且具有最高的微生物CUE,对于调节土壤微生物代谢、维持生态功能和减少微生物二氧化碳排放最优.  相似文献   

7.
土地利用方式对土壤团聚体稳定性和有机碳含量的影响   总被引:11,自引:0,他引:11  
罗晓虹  王子芳  陆畅  黄容  王富华  高明 《环境科学》2019,40(8):3816-3824
探究不同土地利用方式下土壤团聚体的粒径分布、稳定性及有机碳在各粒径团聚体中的分布规律,以期为重庆地区土壤结构的改善及土壤有机碳库的维持及提高提供依据.以重庆市北碚区6种土地利用方式(针阔叶混交林、竹林、果园、旱地、水田和荒草地)为研究对象,采用湿筛法对土壤进行粒径分组,对比分析了6种土地利用方式处理下土壤团聚体和团聚体有机碳在0~20、20~40、40~60和60~100 cm土壤剖面中的分布规律.结果表明,不同土地利用方式下,土壤的结构和肥力水平存在显著的差异.在0~100 cm土层土壤的各粒径团聚体中,6种土地利用方式的团聚体粒径均以 0. 25 mm为主;其中,竹林 0. 25 mm团聚体含量最高,其次是荒草地,旱地与果园含量最低.不同土地利用方式下0. 25~2 mm的粒径团聚体主要分布在0~20 cm土层(28. 78%~50. 08%),而0. 053~0. 25 mm和0. 053 mm的粒径团聚体主要集中在40~60cm土层.在整个土壤深度内,竹林和荒草地的土壤团聚体MWD和GMD均高于其他土地利用方式,即二者的土壤团聚体稳定性较强.土壤团聚体稳定性与土壤团聚体有机碳呈极显著正相关(r=0. 569,P 0. 01),在0~100 cm土层中,土壤0. 25~2 mm和0. 053 mm粒径的有机碳含量较高,其中0. 25~2 mm的最高,平均含量为56. 54 g·kg~(-1).除旱地土壤各粒径团聚体有机碳含量在20~40 cm土层内最高,其他土地利用方式下土壤各粒径团聚体内有机碳含量均随土壤深度的增加而降低,表现出显著的表层富集现象.总体上,6种土地利用方式下,竹林和荒草地在各土层中的土壤团聚体稳定性较好,且在各土层中,竹林土壤各粒径团聚体有机碳含量最高.  相似文献   

8.
为确定生物炭对土壤呼吸速率以及土壤碳组分的影响,采用田间小区试验,以苹果果树枝条生物炭为试验材料,研究了添加0、20、40、60、80 t/hm2的苹果果树枝条生物炭后,小麦生态系统呼吸(Re)、土壤呼吸(Rs)、植物呼吸(Rp)、土壤TOC(总有机碳)、土壤POC(颗粒有机碳)、WSOC(土壤水溶性有机碳)和土壤AOC(易氧化有机碳)的变化以及各指标之间的相关性.结果表明,添加生物炭显著提高了小麦生态系统呼吸速率、土壤呼吸速率和植物呼吸速率,与对照相比分别增加了9.98%~27.57%、9.33%~19.47%和10.18%~30.14%,并且生物炭施用量为20和40 t/hm2时土壤呼吸速率显著高于其他两个处理,而对于小麦生态系统呼吸速率和植物呼吸速率来说,施用40 t/hm2生物炭时其值最高.对于土壤碳组分,施用生物炭显著提高了0~20 cm土层中土壤w(TOC)、w(POC)和w(AOC),并且土壤w(TOC)和w(POC)与生物炭施用量呈极显著正相关.对于WSOC而言,当生物炭施用量高于40 t/hm2时其值显著降低,与对照相比,0~10、>10~20和>20~30 cm三个土层中w(WSOC)分别降低了21.82%~28.37%、35.88%~36.58%和32.28%~44.07%.研究显示,适量施用生物炭能够提高土壤w(TOC)、w(POC)和w(AOC)而降低了w(WSOC),但同时也增加了小麦生态系统呼吸速率.   相似文献   

9.
长期撂荒恢复土壤团聚体组成与有机碳分布关系   总被引:6,自引:0,他引:6  
为探究撂荒地恢复过程土壤团聚体组成结构及其对土壤碳库累积的影响,本研究选取陕北黄土丘陵区恢复10、 17、 27和42 a撂荒草地为研究对象,以坡耕地FL作为对照,分析不同年限撂荒草地以及耕地土壤(0~20 cm)与(20~40 cm)土层团聚体粒径分布、土壤全土有机碳储量以及团聚体有机碳储量动态特征,从而探究撂荒地土壤团聚体与有机碳之间的相互关联性.结果表明:①耕地恢复为撂荒草地后,土壤大团聚体(2 mm)和中团聚体(2~0.25 mm)数量、平均重量直径(mean weight diameter, MWD)和几何平均直径(geometric mean diameter,GMD)随着撂荒年限显著上升,而土壤微团聚体(0.25~0.053 mm)数量显著下降(P0.05).土壤大团聚体数量、平均重量直径和几何平均直径在层次之间差异显著,表现为0~20 cm显著高于20~40 cm.②经过长期撂荒恢复后,土壤总有机碳储量、大团聚体有机碳储量以及中团聚体有机碳储量显著上升(P0.05),分别上升了1.92、 10.2和3.61倍,而微团聚体有机碳储量显著下降.撂荒恢复促使土壤碳氮化学计量比升高,但在42 a时出现了显著下降趋势.③土壤团聚体对于总有机碳储量的贡献率有80%来自大团聚体,且大团聚体数量随着恢复年限显著增加是大团聚体贡献率高的主要原因.总体而言,撂荒恢复过程中,微团聚体数量持续下降,而大团聚体数量显著增加并促进了土壤有机碳的累积.  相似文献   

10.
秸秆与生物炭还田对土壤团聚体及固碳特征的影响   总被引:38,自引:17,他引:21  
揭示秸秆与生物炭还田对团聚体有机碳含量、分布、稳定性以及相对贡献率的影响,有利于明确秸秆与生物炭还田下土壤碳库的稳定性及其保护机制.采用田间试验方法研究了油菜/玉米轮作模式下,秸秆与生物炭还田对土壤团聚体及固碳特征的影响.结果表明:(1)秸秆与生物炭还田各处理均能提高土壤有机碳含量,其中生物炭还田(BC、16.88 g·kg~(-1))、秸秆+生物炭还田(CSBC、17.37 g·kg~(-1))效果优于秸秆还田(CS、13.76 g·kg~(-1))和秸秆+速腐剂还田(CSD、14.68 g·kg~(-1)).(2)与对照(CK)处理相比,CS、CSD处理能显著地提高大团聚体(2 mm)含量,增加率为94.00%~117.78%,同时显著提高了水稳性团聚体的平均重量直径(MWD)、几何平均直径(GMD)、R0.25,降低了分形维数(D),提高了团聚体稳定性(P0.05).(3)随着团聚体粒径的增大,团聚体有机碳含量呈现先降低再增高然后再降低,且粉黏粒(0.053 mm)对土壤有机碳贡献率最高(29.61%~42.18%),大团聚体有机碳贡献率最低(9.19%~17.81%).除CSD处理外,CS、BC、CSBC处理降低了较大团聚体(2~0.25 mm)和微团聚体(0.25~0.053 mm)有机碳贡献率.秸秆还田促进土壤团聚作用效果优于生物炭还田,而生物炭还田提高团聚体有机碳含量效果优于秸秆还田,秸秆新碳主要向大团聚体内分配,秸秆+速腐剂还田还能促进较大团聚体内不同组分结合新碳,生物炭、秸秆+生物炭还田主要向微团聚体中富集.  相似文献   

11.
土壤修复与改良的微生物技术   总被引:10,自引:0,他引:10  
综述了国内外近几年来关于土壤污染与损伤的微生物修复技术,包括土壤污染的微生物修复技术和土壤改良的微生物技术,总结了各项技术的工作重点、类型和思路.  相似文献   

12.
综述了现代常规农业对土壤的污染、有机农业的特点及有机农业土壤保护措施的生态学原理。  相似文献   

13.
长期施氮和水热条件对夏闲期土壤呼吸的影响   总被引:9,自引:7,他引:2  
张芳  郭胜利  邹俊亮  李泽  张彦军 《环境科学》2011,32(11):3174-3180
在黄土高原地区,夏季休闲期既是高温多雨期也是土壤微生物强烈活动期.研究该时期土壤呼吸变化与土壤水分、温度和施氮之间关系,有助于深入理解农田生态系统土壤呼吸的时空变异性及其影响因素.本研究以1984年设立在黄土旱塬区长期田间定位试验为平台,选取了5个不同施氮处理(N0、N45、N90、N135和N180),于2009年夏...  相似文献   

14.
土壤污染现状与土壤修复产业进展及发展前景研究   总被引:1,自引:0,他引:1  
近年来随着中国土壤污染事件频发,土壤污染趋势加重,国家也越来越重视土壤污染的防治工作,正在逐步完善相关法律并进行了一系列的宏观调控.2014年4月环保部公布的公报显示,全国土壤环境状况令人堪忧.但由于中国土壤污染修复研究起步较晚,土壤修复尚未形成产业化,因此需要政府从战略高度进行产业调整、完善相关法律法规、加强政府监督和财政支持等方面给土壤修复产业予以支持,促使中国土壤修复产业健康快速发展.  相似文献   

15.
水热条件与土壤性质对农田土壤硝化作用的影响   总被引:13,自引:3,他引:10  
水热条件、土壤性质和耕作管理影响了土壤的硝化作用从而影响农田氮素循环和平衡.本试验选择中国东部3个气候带上的主要农田土壤:中温带黑龙江海伦的黑土、暖温带河南封丘的潮土和中亚热带江西鹰潭的红壤,在上述3个地点的生态试验站建立土壤置换试验,对比研究不同水热条件和土壤类型对玉米单作系统中土壤硝化作用的交互影响.2006~2007年的试验结果表明,在玉米抽雄期,从海伦到鹰潭(月均温由22.3℃上升到26.8℃,月降水由100.8 mm增加到199.6 mm),3种土壤的硝化作用强度均随着月均温和月降水的增加而下降,黑土、潮土和红壤分别下降了64.2%~67.2%、 52.1%~52.5%和41.7%~75.2%,土壤的硝化作用强度与气温(r=-0.354,p<0.01)和降水(r=-0.290,p<0.01)均呈极显著负相关.土壤类型也显著影响了土壤硝化细菌的数量和硝化强度,硝化细菌数和硝化强度的大小顺序为:潮土> 黑土> 红壤.土壤pH对土壤硝化强度有显著影响,其相关系数r=0.551(p<0.01).总体上,在玉米抽雄期,区域水热状况及土壤类型、施肥均影响了土壤的硝化强度,水热×土壤类型、水热×施肥、土壤类型×施肥、水热×土壤类型×施肥等对硝化强度有着极显著的交互作用.  相似文献   

16.
小流域土壤有机碳的分布和积累及土壤水分的影响   总被引:1,自引:1,他引:0  
地形和土地利用决定的土壤水分和土壤有机碳(Soil Organic Carbon,SOC)的空间分布格局为研究水碳关系提供了重要的线索,但土壤水分的强变异性和SOC的相对稳定性对土壤水碳关系的研究提出了挑战。研究基于陆地水量平衡角度,选择雨季后土壤水分恢复期在晋西黄土丘陵小流域尺度进行了重复采样,按照3种地貌类型(沟底、 沟坡、 峁坡)和3种土地利用方式(农地、 林地、 草地)共布置37个样点,采集0~100 cm土壤样品测定土壤水分和SOC,探讨土壤水分与SOC分布特征及其相互关系。结果表明:同一土地利用方式下,土壤水分和SOC总体上沟底>沟坡>峁坡;同一地貌类型下,土壤水分农地>草地>林地,SOC农地<草地<林地。SOC与土壤水分呈现正相关关系,二者符合指数增长(y=y0+log a×ax,y为SOC,x为土壤水分)关系,因地貌部位和土地利用方式的不同决定系数在7%~37%之间变化。这一结果为基于土壤水分变化预测SOC积累和分布提供了参考。  相似文献   

17.
杨莉琳  谢志霞  朱向梅  撒旭 《环境科学》2023,44(10):5641-5648
以土壤改良剂对荒芜重盐碱地生物改良和开发利用为研究目标,在华北低平原区滨海荒芜重盐碱地开展了施用生物炭(B)和调理剂(C)种植先锋作物油葵的大田试验.生物炭用量设2个水平(0和1.25 kg ·m-2)调理剂施用量设3个水平,分别为0、0.83和1.66 kg ·m-2,共6个处理.油葵收获后按照每30 cm一层采至90 cm搜集土样.结果表明,施用生物炭提高0~30 cm和60~90 cm土层含盐量,而土壤调理剂则显著降低0~30 cm土壤含盐量.没有发现生物炭或调理剂对土壤pH有显著影响.生物炭处理显著抑制土壤硝化作用,导致0~90 cm土层NO3--N含量显著下降,NH4+-N含量提高,对有机质(SOM)含量没有显著影响.施用土壤调理剂提高0~30 cm土壤SOM含量,调理剂施用量为1.66 kg ·m-2时0~90 cm土层的NO3--N含量显著增加.单施生物炭与调理剂或者二者组合均显著增加0~90 cm土壤NH4+-N含量、有效磷(Olsen-P)含量和有效钾(Kex)含量,但生物炭对这3种养分含量的提升效果更显著,土壤调理剂则在增加0~30 cm土壤有机质和降盐方面更有效.施用高量调理剂促进土壤硝化作用,而施用生物炭恰恰起到硝化抑制剂的作用,因此,将生物炭与土壤调理剂结合施用,是滨海荒芜重盐碱地防止NO3--N淋失、减少环境污染、增肥降盐并保障耐盐先锋作物高肥低盐生长环境的有效措施.  相似文献   

18.
明确气候变化背景下生态脆弱区土壤呼吸速率特征和土壤温湿度对其影响,对准确评估和预知该区碳收支具有重要意义.以陕北黄土丘陵区自然撂荒地22 a柠条人工纯林为研究对象,通过CO2分析仪和温湿度传感器测定不同土层(10、50和100 cm) CO2浓度平均值和土壤温湿度,采用Fick第一扩散系数法计算土壤呼吸速率,探究不同土层土壤温度、土壤湿度和土壤呼吸速率的动态变化特征,并进一步分析不同土层土壤呼吸速率对土壤温湿度的响应.结果表明,土壤呼吸速率日变化随土层深度增加显著降低(P<0.05),峰值出现时间存在滞后现象,相邻土层间(10、50和100 cm)土壤呼吸速率由上至下均滞后1 h;6~9月土壤呼吸速率月变化为多峰曲线,其中10、50和100 cm土层土壤呼吸速率最大值分别在7月25日、8月6日和8月10日,达13.96、2.96和1.47 μmol ·(m2 ·s)-1;土壤温度对土壤呼吸速率影响随土层深度增加而减弱,50 cm及以下土层土壤温度对土壤呼吸速率无显著影响(P>0.05),10 cm土层指数拟合最优,R2=0.96,50 cm和100 cm土层拟合较差,R2分别为0.00和0.01,温度敏感系数Q10随土层深度增加而减小;不同土层土壤湿度对土壤呼吸速率影响均显著(P<0.05),二次拟合表现为50 cm (R2=0.35)>10 cm (R2=0.22)>100 cm (R2=0.31);10、50和100 cm土层土壤温度与土壤湿度的综合作用可解释土壤呼吸速率的96%、6%~50%和22%~24%.综上所述,黄土丘陵区柠条人工纯林不同深度土壤温湿度对土壤呼吸速率影响存在差异,10 cm土层土壤呼吸速率受土壤温湿度的综合影响,但土壤温度的相对贡献更高,50 cm土层及以下土壤湿度为关键因子.研究结果有助于更好地预测未来气候变化对该区陆地生态系统碳循环影响,为温室气体调控提供理论依据.  相似文献   

19.
内蒙古典型草原土壤及其水文过程对灌丛化的响应   总被引:6,自引:2,他引:4  
基于野外观测和室内试验相结合的方法,研究了内蒙古典型草原小叶锦鸡儿灌丛化过程对土壤和土壤水文过程的影响,旨在为干旱半干旱区环境保护和恢复提供理论基础。结果表明,斑块尺度上,灌丛斑块土壤有机质和全氮含量分别是草地斑块的1.54倍和1.16倍;灌丛斑块平均沙粒、粉粒和粘粒含量是草地斑块的0.87倍、1.34倍和1.35倍;灌丛斑块土壤容重是草地斑块的0.97倍;灌丛斑块钙积层上表面出现深度是草地斑块的1.27倍。地形等自然条件也是形成土壤异质性的重要因子,坡面尺度上,灌丛和草地斑块土壤有机质、全氮、土壤容重、土壤钙积层上表面出现深度呈自坡顶向坡下方向增加的趋势。染色示踪实验表明,灌丛斑块土壤剖面湿润锋和土壤水分入渗速率分别是草地斑块的1.36倍和5.16倍,草地斑块0~10cm土层对水分的响应较敏感,而灌丛斑块25 cm以下土层对水分的响应较敏感。研究认为,灌丛化过程增强了土壤空间异质性,灌丛斑块能将土壤水分快速输送并存储于深层土壤中,灌丛斑块是土壤养分和水分富集区,灌木植物的定居和发展过程与土壤形态之间形成了正反馈。  相似文献   

20.
针对我国贫瘠果园土壤结构和功能退化的问题,以餐厨垃圾制备的土壤调理剂为研究对象,从时间和空间两个层面,采用DR0.25(团粒结构体占比)、MWD(平均质量直径)、GMD(几何平均直径)和分形维数评价长期施用餐厨垃圾土壤调理剂对贫瘠果园土壤团聚体结构特征及其有机质赋存转化的影响.结果表明:施用餐厨垃圾土壤调理剂可增加0~20 cm土壤层中粒径 < 0.25 mm微团聚体的Wwi(水稳性团聚体占比),施用3 a后其Wwi最大值为23.04%,有利于提升土壤抗侵蚀性;随着施用餐厨垃圾土壤调理剂时间的延长,30~40 cm土壤层的DR0.25逐渐增加,施用5 a后各土壤层MWD和GMD均大于对照组;随着施用时间的延长,相同深度土壤层的分形维数逐渐减小,施用5 a后0~20 cm土壤层分形维数最小值为2.13,表明施用餐厨垃圾土壤调理剂有利于改善土壤团聚体粒径分布和土壤分维特征;施用餐厨垃圾土壤调理剂可提升0.5~5 mm粒级团聚体中的有机质含量.研究显示,长期施用餐厨垃圾土壤调理剂可改善土壤团聚体粒径和有机质的分布,有助于土壤团聚体中有机质的赋存转化,提高团聚体稳定性和土壤抗侵蚀力.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号