首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为研究济南市机动车排气对城市区域空气质量的影响,利用环境空气质量监测站点(简称"1号站点")和路边机动车尾气监测站点(简称"2号站点")的在线数据,以及基于4种模拟情景的CMAQ空气质量模型预测数据,研究了济南市城市区域大气污染物质量浓度变化规律及不同机动车车型对6种常规大气污染物的贡献.结果表明:①在采暖季,1号站点ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(CO)、ρ(O3)和ρ(SO2)月均值分别为435 μg/m3、702 μg/m3、84.2 μg/m3、6.8 mg/m3、4.5 μg/m3和92 μg/m3.②2015年12月24日(灰霾天),1号站点ρ(CO)、ρ(PM2.5)和ρ(PM10)均明显升高,ρ(SO2)、ρ(O3)和ρ(NO2)均变化不明显.2个监测站点中ρ(NO2)和ρ(PM10)均呈双峰趋势,2个峰值出现的时间与上、下班高峰期基本一致.除ρ(O3)和ρ(SO2)达GB 3095-2012《环境空气质量标准》二级标准外,其他污染物均超过GB 3095-2012二级标准限值,采暖季大气污染特征为颗粒物型污染.③机动车对研究区域NO2和PM10贡献率较大,其中,小型车对CO、NO2、PM10和PM2.5贡献率最大,其贡献率分别为85.7%、50.1%、53.4%和52.8%.机动车排放源能降低空气中ρ(O3),其总贡献率为-25.5%,其中大型车、中型车、小型车对O3的贡献率分别为-8.8%、-2.7%和-8.9%.灰霾天下不同机动车车型对空气中污染物质量浓度的总贡献率均比采暖季大.研究显示,济南市采暖季大气污染特征为颗粒物型污染,机动车排放源对空气中NO2和PM2.5有较大贡献.   相似文献   

2.
利用Andersen空气微生物采样器采集青岛市不同空气质量下的可培养生物气溶胶,分析了其浓度和粒径分布特征,并利用Spearman’s相关性分析了可培养生物气溶胶浓度和空气质量指数中的颗粒物质量浓度〔ρ(PM10)、ρ(PM2.5)〕、气体污染物质量浓度〔ρ(O3)、ρ(SO2)、ρ(NO2)〕和气象参数(温度、相对湿度、风速)之间的关系.结果表明:可培养真菌和细菌气溶胶浓度范围分别为133~1 113和13~212 CFU/m3.真菌气溶胶浓度与ρ(SO2)、ρ(PM10)、ρ(PM2.5)均呈正相关,而与相对湿度呈显著负相关(P<0.05).细菌气溶胶浓度与ρ(NO2)、ρ(SO2)呈负相关,而与ρ(O3)、温度呈正相关.风速对可培养生物气溶胶浓度的影响较小.以AQI(空气质量指数)中ρ(PM10)为依据,将研究时间段空气质量划分为4个空气污染等级.在不同污染等级下,真菌气溶胶均呈对数正态分布,粒径主要分布于2.1~4.7 μm.低污染时细菌气溶胶呈偏态分布(粒径>4.7 μm),高污染时粒径分布发生改变.初步推断,随着空气污染等级的升高,可培养生物(真菌+细菌)气溶胶总浓度增加,但单位颗粒物上的浓度变化较稳定.ρ(PM10)是影响可培养生物气溶胶浓度及粒径分布的主要因素.   相似文献   

3.
西宁市PM2.5水溶性无机离子特征及其来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨西宁市PM2.5水溶性无机离子的特征及其来源,于2017年1月-2018年4月在西宁市开展PM2.5样品采集工作,使用离子色谱仪分析水溶性无机离子.结果表明:西宁市大气中ρ(PM2.5)平均值为(42.7±36.6)μg/m3,4个采样点ρ(PM2.5)大小顺序依次为市区(54.9 μg/m3)>工业区(44.1 μg/m3)>郊区(40.8 μg/m3)>农村(28.3 μg/m3);ρ(PM2.5)季节性分布特征明显,呈冬季最高、夏季最低的特征.SNA(为SO42-、NO3-和NH4+的统称)是最主要的水溶性离子,占总水溶性离子的66.3%,SNA季节性分布特征为冬季最高、夏季最低.4个采样点SOR(硫氧化率)和NOR(氮氧化率)平均值均大于0.10,说明SO42-和NO3-主要来源于二次转化.采样期间PM2.5中ρ(NO3-)/ρ(SO42-)为0.72,表明燃煤源排放大于交通源排放.主成分分析显示,西宁市PM2.5水溶性离子来源主要为二次粒子源、工业源、扬尘源和燃烧源.研究显示,西宁市城区、工业区、郊区大气中ρ(PM2.5)平均值均超过GB 3095-2012《环境空气质量标准》一级标准限值,建议减少PM2.5的产生应以控制二次粒子源、工业源、燃烧源和扬尘源为主.   相似文献   

4.
为识别我国沿海地区的大气污染分布特征,基于2015—2016年我国沿海12个省(自治区、直辖市)的115个地级以上城市ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(O3)、ρ(CO)和ρ(SO2)监测数据,在分析其时空分布特征的基础上,结合主成分分析和AIC(改进赤池信息准则)开展我国沿海地区大气污染聚类分析研究.结果表明:我国沿海地区颗粒物污染严重,其中70%和54%的城市未达到GB 3095—2012《环境空气质量标准》中ρ(PM2.5)和ρ(PM10)二级标准,ρ(PM2.5)在空间上以浙江省金华市为界呈“北高南低”、金华市以北地区“西高东低”的分布特征;环渤海带及长三角地区ρ(O3)处于相对较高水平,山东省中部ρ(SO2)突出,最高值达71.3 μg/m3.根据6种大气污染物监测值,可将115个地级以上城市聚为3类:类Ⅰ包括河北省南部和山东省西部在内的21个城市,空间分布连续且相对集中,受本地源和扩散条件的影响,各项大气污染物质量浓度均处于较高水平;类Ⅱ包括辽宁省、山东省东部和长三角等地区的42个城市,各项大气污染物质量浓度较类Ⅰ有所降低,ρ(PM2.5)降低(比类Ⅰ低34.2%)明显,更多表现为受工业和散煤燃烧影响的SO2污染,和受海运船舶和陆路交通源影响的NO2污染;类Ⅲ包括福建省、广东省和广西壮族自治区沿海一带的52个城市,大气污染物质量浓度相对较低,空气质量较优,受季风和外来源影响的秋季O3污染特征明显.3类城市ρ(O3)平均值相近但季节性变化有所差异,类Ⅰ和类Ⅱ ρ(O3)峰值均出现在6月,类Ⅰ ρ(O3)季节性差异更为显著,类Ⅲ峰值出现在10月,全年变幅相对较小.研究显示,我国沿海地区山东省西部、江苏省北部与京津冀地区南部呈较为相似的污染特征,广西壮族自治区柳州市与周边城市呈不同聚类特征,ρ(PM)和ρ(SO2)相对较高,为大气污染热点.   相似文献   

5.
为了解包头市大气污染特征,利用包头市2014年ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)、ρ(CO)和ρ(O3)环境空气自动监测数据,结合气象参数,分析了包头市大气污染特征及其影响因素.结果表明:① 包头市春季大气污染以PM10为主,夏季以O3为主,秋冬两季PM10和PM2.5均有不同程度污染. ② ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)的24 h平均值和ρ(O3)日最大8 h平均值分别有153、76、10、6和3 d超出GB 3095-2012《环境空气质量标准》二级标准限值,ρ(CO)24 h平均值全年达标. ρ(PM10)、ρ(PM2.5)和ρ(NO2)年均值分别为GB 3095-2012二级标准限值的2.2、1.6和1.2倍,ρ(SO2)年均值达标. ③ PM2.5/PM10(质量浓度比)四季分布为冬季(0.45)>秋季(0.39)>夏季(0.36)>春季(0.27),年均值为0.37,粗颗粒污染特征明显. ④ SO2/NO2(质量浓度比)四季分布为冬季(1.76)>春季(1.15)>秋季(0.82)>夏季(0.75),年均值为1.12,并且取暖季明显高于非取暖季,说明冬季燃煤取暖对包头市空气质量有重要影响. ⑤ 包头市的严重污染主要有沙尘型和煤烟型2种. ⑥ 系统聚类分析表明,扬尘引起的PM10对包头市环境空气质量有重要的影响,以SO2和CO为排放特征的燃煤对PM2.5有较大的贡献.   相似文献   

6.
焦作市是京津冀地区"2+26"通道城市之一.为研究焦作市大气污染特征,于2016年1月-2018年2月使用3个国控站点(马村区生态环境局、焦作市生态环境局和高新区政府)大气环境监测数据,以及2018年1月焦作市边界站PM2.5及其化学组分(水溶性离子和碳组分)监测数据进行分析.结果显示:焦作市大气污染以PM2.5污染为主,2017年ρ(NO2)、ρ(PM2.5)、ρ(PM10)、ρ(CO)和ρ(SO2)平均值分别为42.4 μg/m3、79.0 μg/m3、136.5 μg/m3、1.42 mg/m3和38.3 μg/m3,较2016年分别下降了10.5%、10.6%、11.2%、20.7%和37.6%.在时间分布上,大气污染物质量浓度日变化具有明显的季节性特征,春、夏两季ρ(NO2)日变化较秋、冬两季呈更宽的"U型",ρ(SO2)峰值出现在12:00左右,推测原因与夜间高架源排放有关;在空间分布上,本地一次污染排放可能主要来自市区工地扬尘、西南地区交通源和东部污染点源.观测期间,ρ(NO3-)、ρ(NH4+)和ρ(SO42-)较高,平均值分别为39.42、23.66和23.01 μg/m3,分别占水溶性离子质量浓度的41.8%、25.1%和24.4%,占ρ(PM2.5)的27.4%、16.4%和16.0%.污染天的NOR(氮转化率)(0.35)和SOR(硫转化率)(0.43)明显高于清洁天的NOR(0.25)和SOR(0.18),表明污染天NO2和SO2二次转化程度更高.SOR和NOR随相对湿度的增加而增加,表明相对湿度较高时有利于NO2和SO2的二次转化.污染天和清洁天ρ(SOC)(SOC为二次有机碳)估算值分别为19.79和3.51 μg/m3,分别占ρ(OC)的79.4%和54.9%,占ρ(PM2.5)的9.8%和10.4%,表明焦作市SOC对OC有较大的贡献.PSCF(潜在源贡献因子法)结果表明,本地源是影响焦作市秋、冬两季PM2.5的主要潜在源,太行山南麓区域输送也对其有一定贡献.研究显示,焦作市大气污染较严重,本地一次排放、二次转化和区域输送是焦作市PM2.5的主要来源.   相似文献   

7.
为研究浙江省嘉兴市冬季PM、污染气体和含碳气溶胶在不同空气质量等级下的分布特征,于2013年11月28日—12月28日使用SHARP测尘仪、热电EMS系统和Sunset在线OCEC分析仪观测了PM(PM10和PM2.5)、污染气体(SO2、NO2、CO和O3)和含碳气溶胶〔OC(有机碳)、EC(元素碳)和TC(总碳)〕的质量浓度,结合气象数据和HYSPLIT模式,分析了霾污染过程中大气污染物浓度变化、日变化及其来源特征.结果表明:嘉兴市冬季霾天ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)、ρ(O3)、ρ(OC)、ρ(EC)、ρ(POC)和ρ(SOC)分别为167.90、248.86、77.79、、97.16、28.50、27.09、7.72、7.50和19.59 μg/m3,ρ(CO)为1.47 mg/m3,分别是空气质量为良时的3.00、2.50、1.29、1.84、0.86、2.59、2.19、2.13、2.82和1.50倍.降雨对不同大气污染物的清除作用不同,对粗粒子的清除作用较大,而对二次产物O3的影响较小.高ρ(PM)是造成能见度降低的主要原因,随着污染程度的加剧,PM中细粒子占比越来越高,在严重污染过程中ρ(PM2.5)/ρ(PM10)可达70.31%,比空气质量为良时高14.04%;不同污染气体的日变化不同,OC和EC的来源逐渐趋于一致,ρ(SOC)呈现出积累-爆发-积累-爆发的往复过程,边界层的日变化对污染物浓度的影响逐渐减弱.研究显示,随着霾污染的加剧,SOC气溶胶占比逐渐增加、EC和POC等一次碳气溶胶占比逐渐降低.   相似文献   

8.
山东省空气质量存在明显的时空差异,并受气象和社会经济因子等的综合影响.为了解山东省空气质量指数(AQI)以及颗粒物和臭氧(O3)浓度等时空演化特征,探究颗粒物与O3浓度之间的协同关系,基于山东省16个地级市2013年12月—2021年12月的AQI和空气污染物(SO2、NO2、CO、O3、PM2.5和PM10)浓度数据与同期的气象数据、工业及生活污染物(氨氮、SO2、氮氧化物和烟尘、粉尘等)排放量和社会经济数据,运用R语言和ArcGIS对各地区AQI与PM2.5和O3浓度等的时间和空间变化特征及关键影响因素识别分析.结果表明:(1)山东省AQI和空气污染物浓度具有明显的月际、季节和年际变化特征以及地区性差异.鲁东地区各季节空气质量明显优于鲁西地区,呈现由东向西空气污染愈加严重的趋势. PM2.5浓度呈鲁西地区最高,鲁中、鲁南和鲁北地区次之,鲁东地区...  相似文献   

9.
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.   相似文献   

10.
常州市冬季大气污染特征及潜在源区分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解常州市冬季大气污染特征,对2013—2015年常州市冬季PM2.5、PM10、SO2、NO2、CO数据进行分析,并结合HYSPLIT 4.9模式研究不同气团来源对常州市各污染物浓度的影响及潜在污染源区分布特征.结果表明,常州市冬季以PM2.5污染为主,其占冬季首要污染物的90%以上,冬季PM2.5小时浓度对应的空气质量级别以良和轻度污染出现频次最多,冬季的ρ(PM2.5)对ρ(PM2.5)年均值的贡献率高达37.4%,不完全燃烧是颗粒物的一个重要来源.冬季ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的日变化均呈双峰分布,两个峰值分别出现在交通的早高峰和晚高峰附近.ρ(NO2)在晚高峰明显大于早高峰,而ρ(SO2)和ρ(CO)表现为早高峰大于晚高峰.常州市CO/NOx和SO2/NOx的分析结果表明,常州市交通源的贡献明显,点源对常州市的空气质量的影响也较大.1和6 h的ρ(PM2.5)梯度变化可判识细颗粒物的爆发性增长.冬季常州市受到西北、西和西南等地区的大陆性气流影响较大,其对应的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)平均值相对较高,且对应的污染轨迹出现概率较大.偏东方向的气流由于移动速度慢,不利于污染物扩散易造成污染累积,导致ρ(PM2.5)、ρ(SO2)和ρ(NO2)相对较高.WPSCF(源区分布概率)高值区(>0.5)集中于从芜湖至上海的长江中下游区域和杭州湾区域.PM2.5、PM10、SO2、NO2和CO潜在源区存在较大差异性,NO2、SO2和CO本地化的潜在贡献较PM2.5和PM10更明显.此外,受船舶等影响海洋源区对NO2、SO2和CO的潜在贡献较大.研究显示,长三角区域的大气污染物以本地污染为主,但远距离污染输送贡献也不容忽视.   相似文献   

11.
为研究新型冠状病毒肺炎(COVID-19)疫情防控政策实施对上海市大气污染物质量浓度的影响,利用上海市内环某高层顶楼微环境平台观测了政策实施前10 d(2020-01-14—23)和实施后20 d(2020-01-24—02-12)的PM2.5和PM10质量浓度及气象要素(温度、相对湿度、风向、风速、大气压及降雨),结合2019年同期观测数据和杨浦四漂空气质量监测点的气态污染物逐时数据,采用描述性统计、合成分析、拉格朗日粒子扩散模式和Spearman相关系数方法,分析了政策实施前、后大气污染物特征及其影响因素。结果表明:1)污染物浓度变化方面。政策实施后,ρ(PM2.5)和ρ(PM10)和ρ(NO2)均明显降低,ρ(PM2.5)和ρ(PM10)分别由61.4,102.4 μg/m3降至38.1,63.5 μg/m3,降幅均为38.0%,ρ(NO2)由57.3 μg/m3降至27.0 μg/m3,降幅达到52.9%,而ρ(O3)由47.6 μg/m3增至69.5 μg/m3。ρ(PM2.5)和ρ(PM10)日变化特征由实施前的双峰双谷型变为单谷型。2)气象因素影响方面。上海地区南风异常减弱了冬季风强度,对流层中层正距平异常抑制了对流活动的发展,易导致大气污染物在近地面的汇聚。ρ(PM2.5)和ρ(PM10)与相对湿度呈负相关,风速对ρ(PM2.5)和ρ(PM10)的影响与风向有关。3)外源输入影响方面。长三角城市群及山东省、河南省等周边区域对上海市ρ(PM2.5)和ρ(PM10)贡献显著。  相似文献   

12.
保定市大气污染特征和潜在输送源分析   总被引:1,自引:0,他引:1       下载免费PDF全文
保定市是京津冀地区重要城市之一.为了解保定市大气污染物质量浓度特征和潜在输送源,对保定市国控点2017年1月1日-12月31日PM10、PM2.5、SO2、NO2、O3、CO等常规大气污染物数据进行分析,并利用TrajStat后向轨迹模型进行区域传输研究.结果表明:①ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)分别为(138±96)(84±66)(29±23)和(50±24)μg/m3,与2016年相比分别下降5.9%、9.1%、25.5%和13.1%;ρ(CO)较2016年下降了14.0%;ρ(O3)较2016年增长了25.2%.ρ(PM10)、ρ(PM2.5)、ρ(NO2)和ρ(O3)分别超过GB 3095-2012《环境空气质量标准》二级标准限值的0.97、1.40、0.25和0.34倍,ρ(SO2)和ρ(CO)未超标.②除ρ(O3)外,其他污染物质量浓度均呈冬季最高、夏季最低的季节性特征,其中,冬季PM2.5污染最为严重,春季PM2.5~10(粗颗粒物)污染严重.③空气质量模型源解析结果显示,保定市ρ(PM2.5)约60.0%~70.0%来自本地污染源排放.后向轨迹结果表明,在外来区域传输影响中,保定市主要受到西北方向气团(占比为21.7%~60.0%)远距离传输和正南方向气团(占比为34.8%~50.5%)近距离传输的影响.④PSCF(潜在源贡献因子分析法)和CWT(浓度权重轨迹分析法)分析表明,除保定市及周边区县本地污染贡献外,位于太行山东麓沿线西南传输通道的邯郸市、邢台市、石家庄市是影响保定市PM2.5的主要潜在源区.研究显示,PM2.5为保定市大气中的主要污染物,并呈冬季高、夏季低的变化特征,其主要来自西北远距离输送和南部近距离传输.   相似文献   

13.
南京城区冬季大气污染特征   总被引:5,自引:2,他引:3       下载免费PDF全文
为探究南京城区冬季主要大气污染物浓度变化规律,运用南京市空气自动监测站的φ(CO)、φ(O3)、φ(NO2)、φ(SO2)、ρ(PM2.5)和ρ(PM10)逐时资料,结合同期气象数据,分析了2014年冬季(2014年12月—2015年2月)南京城区大气污染浓度水平和变化特征,探讨2015年春节期间在实施减排措施下气象条件对空气质量的影响.结果表明:① 观测期φ(CO)日均值和φ(O3)小时均值未超过GB 3095—2012《环境空气质量标准》二级标准限值;ρ(PM2.5)、ρ(PM10)、φ(NO2)、φ(SO2)日均值分别超标44%、38%、34%、2%;ρ(PM2.5)、ρ(PM10)最大日均值分别为231和283 μg/m3,分别是GB 3095—2012二级标准限值的3.1、1.9倍. ② 日变化分析显示,φ(CO)与φ(NO2)呈早晚双峰型变化,与早晚交通高峰源排放有关;φ(O3)呈明显的单峰型,在午后出现峰值;φ(SO2)呈单峰型且夜间浓度低于白天;ρ(PM2.5)和ρ(PM10)为双峰型变化,峰值出现在10:00和22:00左右. ③ 南京地区污染物周末浓度整体高于工作日,其中周末φ(CO)、φ(NO2)和ρ(PM2.5)显著高于工作日,“周末效应”显著. ④ 2015年春节期间,南京实施减排措施后,即使在不利的气象条件下,污染物浓度也未出现明显升高,说明减排措施有效削弱了污染源的排放,是保持南京地区良好空气质量的重要因素.   相似文献   

14.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

15.
利用中国环境监测总站发布的实时大气环境监测资料,选择京津冀地区8个城市(北京市、天津市、石家庄市、保定市、唐山市、邢台市、邯郸市和秦皇岛市)57个站点为研究对象,对2015年该地区AQI(环境空气质量指数)及其首要污染物日报和实时报特征进行综合分析与评估.结果表明:①京津冀地区8个城市空气质量等级日报的首要污染物主要是PM2.5,其中邯郸市以PM2.5为首要污染物日数占比(即出现日数占全年总天数的比例)最高,为90%;北京市最小,为50%;其余城市在70%左右.以O3为首要污染物日数占比较高的是北京市和保定市,超过20%;秦皇岛市最小,为2.8%.以NO2为首要污染物日数占比较高的是秦皇岛市,为10.6%.②京津冀地区8个城市AQI实时报中以O3为首要污染物的情况最多不超过10%,几乎没有以NO2为首要污染物的情况;但在AQI日报中,以O3为首要污染物的日数占比最高的可达26%,以NO2为首要污染物的日数占比高达11%.③以2015年北京市奥体中心站点为例,当AQI日报仅以NO2为首要污染物时(23 d),空气质量等级日报均为良的情况主要发生在1-3月和10-12月;然而同期AQI实时报白天(08:00-16:00)空气质量等级均呈现优、良,而夜晚(16:00以后)ρ(PM2.5)为中度和重度污染等级;当AQI日报仅以O3为首要污染物时(55 d),空气质量等级日报均为良的情况主要发生在4月和7-8月;同期,尽管AQI实时报中ρ(PM2.5)日变化差异不明显,但ρ(PM2.5)达到中度和重度污染等级的时段明显增多,且峰值多出现在10:00左右.④导致AQI日报和实时报结果差异的主要原因是在计算实时AQI时颗粒物质量浓度标准仅参考ρ(PM2.5)和ρ(PM10)24 h限值,这将会导致不确定性及滞后性.研究显示,在全国已有5 a长时间监测数据的基础上,有必要对AQI等内容开展深入研究,以加强对标准及其相关指南和规定的修改与完善工作.   相似文献   

16.
利用轨迹模式研究上海大气污染的输送来源   总被引:15,自引:0,他引:15  
王茜 《环境科学研究》2013,26(4):357-363
利用HYSPLIT4模式和全球资料同化系统(GDAS)气象数据,计算了2010年12月─2011年11月期间抵达上海的气流后向轨迹. 结合聚类方法和上海ρ(SO2)、ρ(NO2)、ρ(PM10)数据,分析了各季节不同类型气流轨迹对污染物浓度的影响,利用引入权重因子后的潜在源贡献算法分析了不同季节PM10和NO2潜在WPSCF(源区分布概率)特征. 结果表明:上海气流输送季节变化特征明显. 冬、春和秋季,上海较易受到来自西北、西南等区域的大陆性气流影响,受沙尘或人为污染排放的影响相对较大,ρ(PM10)、ρ(SO2)和ρ(NO2)平均值相对较高,分别为162、74和53μg/m3. 夏季上海主要受较清洁的海洋性气流影响,ρ(PM10)、ρ(SO2)和ρ(NO2)相对较低,分别为47、19和36μg/m3. 上海PM10和NO2的WPSCF分布特征类似,在冬、春和秋季,WPSCF高值(0.2~0.4)主要集中在江苏南部,河南、安徽等地的带状区域也有一定贡献,说明这些区域是上海这2种污染物的潜在源区. 夏季WPSCF的分布较为集中,上海以外区域值基本小于0.1,说明外来污染输送的贡献较小.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号