首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
外加淀粉酶预处理污泥厌氧发酵产氢研究   总被引:5,自引:1,他引:4  
通过外加淀粉酶预处理剩余污泥,考察了淀粉酶对污泥的破解效果,研究了接种产氢菌(Enterococcus sp.LG1)和未接种产氢菌两种状况下,污泥厌氧发酵产氢效果,并与相应温度(60℃)热预处理污泥的发酵产氢效果进行对比,同时分析探讨了污泥发酵产氢过程中底物和pH值的变化.结果表明,淀粉酶预处理污泥4h后水解效果最佳...  相似文献   

2.
采用厌氧发酵的方法研究Pseudomonas sp.GL1利用灭菌、微波和超声波预处理污泥产氢效果,讨论3种预处理污泥产氢效果的差异,并对污泥发酵过程中底物性质变化(SCOD、可溶性蛋白质、总糖和pH值等)进行了探讨.实验结果显示,产氢菌Pseudomonas sp.GL1发酵各预处理污泥过程中均只有H2和CO2产生,无CH4产生.3种不同预处理污泥同等条件下发酵,灭菌污泥的产氢效果最佳,氢气含量高达81.45%,产氢率为30.07mL·g-1.超声波处理污泥产氢延迟时间最短(3 h);灭菌污泥最长(15 h);微波预处理污泥为12 h.在预处理污泥发酵产氢过程中,各种污泥性质变化情况各不相同,尤其是灭菌污泥,这说明不同的预处理方法影响Pseudomonas sp.GL1发酵过程对污泥中营养物质的利用.  相似文献   

3.
初始pH对酸性预处理污泥厌氧发酵产氢的影响   总被引:4,自引:2,他引:2  
对污泥进行不同pH值的酸性预处理,用HCl将污泥pH值分别调到2.0、3.0、4.0、5.0,在4℃条件下放置24 h,然后再用NaOH分别调到2.0~12.0用于批量试验,系统考察了不同初始pH值对酸性预处理污泥厌氧发酵产氢的影响.研究表明,初始pH为2.0~4.0以及12.0时对产氢菌及耗氢菌有抑制作用,总体产氢量少;初始pH为5.0~9.0时,甲烷菌及产氧菌均活跃,产氢滞后时间短.但总体产氢量少;初始pH为11.0时,甲烷菌受到明显抑制,而产氢菌仍然活跃,总体产氢量较高,发酵后期pH恒定在7.0~8.0,经pH为2.0、3.0、4.0和5.0酸性预处理的污泥(干重)累积产氢量分别为0.59、1.83、0.50和0.56 mL/g.  相似文献   

4.
利用养殖场废水厌氧发酵生物制氢技术研究   总被引:3,自引:0,他引:3  
在批式厌氧反应器中,以厌氧消化污泥作为天然产氢菌源,通过养殖场废水的厌氧发酵生产氢气,考察了厌氧污泥和碳氮营养物质对养殖场废水产氢的影响,并对液相产物的分布、产氢动力学进行了分析.试验分为4个处理.结果表明,加入营养物质接种污泥的养殖场废水氢气含量、累积产氢量和单位COD氢气产量最高可达到50.65%、334.80mL和287.10mL/g.而未接种污泥的原始养殖场废水累积产氢量和单位COD氢气产量仅为59.24mL和67.05mL/g.污泥和碳氮营养物质对产氢能力均有显著地促进作用,加入碳氮源后微生物群促进了原养殖废水有机物的氢的形成.液相末端产物中,乙酸、丁酸占总挥发酸的61%~86%,产氢过程属于典型的乙酸-丁酸型发酵.总挥发性酸含量的提高,其产氢能力也增大. Gompertz模型能够很好地拟合其产氢过程.  相似文献   

5.
为研究水稻土壤中协同固氮产氢菌的固氮产氢特性,拓展协同固氮产氢菌菌种资源,利用厌氧微生物富集培养、亨盖特厌氧滚管等技术,从华南稻田土壤中筛选到一株同时具有产氢和固氮能力的菌株BZ-1. 经形态学观察及16S rRNA基因序列系统发育分析,鉴定菌株BZ-1属于梭状芽孢杆菌属(Clostridium sp.). 通过测定产氢量、生物量、发酵产物及固氮酶酶活等,对菌株BZ-1的产氢能力及协同固氮产氢特性进行分析. 结果表明:菌株BZ-1发酵34.55 mmol/L葡萄糖可产生42.19 mmol/L H2,主要副产物为丁酸(15.96 mmol/L)、乙酸(7.14 mmol/L)和乳酸(5.09 mmol/L);菌株BZ-1具有固氮酶活性,能够以N2为唯一氮源进行生长;菌株BZ-1固氮产氢时,相比于添加7 mmol/L氯化铵的试验组,产氢量提高了14.71%,最大生物量降低了33.33%,乙酸产量提升了61.49%. 研究显示,菌株BZ-1在协同固氮产氢条件下固氮能力的提升、生物量的降低以及核心碳代谢途径的改变可能是其产氢量提升的原因. 固氮产氢菌株BZ-1的获得将为提高土壤肥力以及缓解铅、镉等重金属对农作物的胁迫作用提供新的思路.   相似文献   

6.
以红树林污泥中分离的厌氧发酵产氢细菌Pantoea agglomerans BH18为出发菌株,利用转座子Tn7随机插入菌株基因组DNA,通过卡那霉素筛选与PCR扩增验证,获得一批转座子插入突变菌株.起始pH4.0培养条件下,以产氢量为指标分离获得一株耐酸产氢突变菌株TB220.多次传代结果表明,突变菌株TB220具有稳定的产氢遗传特性.起始pH3.5~7.0范围内,突变菌株TB220最适产氢pH值为6.0,产氢量为(2.39±0.08)mol H2/mol葡萄糖.起始pH4.0和葡萄糖浓度10g/L的海水培养条件下,突变菌株TB220产氢量为(0.47 ± 0.02)mol H2/mol葡萄糖,比野生菌株高70%,表现出较强耐酸性.  相似文献   

7.
一株高效产氢突变体RF-9的筛选与产氢特性   总被引:2,自引:1,他引:1       下载免费PDF全文
以从连续流搅拌槽式反应器(CSTR)内的活性污泥中分离出的厌氧产氢菌Ethanologenens sp.ZGX4为出发菌株,经过紫外线和亚硝酸复合诱变,从大量的突变体中筛选出一株稳定的高效产氢菌株RF-9.磷酸盐浓度在120mmol/L、温度37℃、初始pH6.0、葡萄糖浓度10g/L培养条件下,RF-9的单位体积产氢量和氢气产率为139.7mmol/L和2.52mol H2/mol葡萄糖,分别是对照的1.50倍和1.43倍.在发酵时间为15h、pH4.1、细胞干重0.722g/L时,RF-9获得其最大产氢速率345mLH2/(h·L),是对照ZGX4的1.41倍.RF-9的主要液相末端产物为乙醇和乙酸,为典型的乙醇发酵细菌,与对照相似.  相似文献   

8.
酸性预处理污泥厌氧发酵产氢   总被引:13,自引:2,他引:11  
通过批量试验系统研究了酸性预处理污泥厌氧发酵产氢情况.研究结果表明,通过酸性预处理,不仅对耗氢菌起到抑制作用,还能起到一定的融胞作用,使污泥中溶解性的糖和蛋白质的含量增加,促进厌氧发酵产氢;酸性预处理污泥厌氧发酵主要降解的有机物质为蛋白质,糖类次之.最佳的酸性预处理条件为调整原污泥pH=3.0放置24h;经过pH=3.0酸性预处理后调节初始pH=11.0的条件下厌氧发酵产氢,其最大累积产氢量最高,为14.66 mL.  相似文献   

9.
以分离自红树林污泥的厌氧发酵产氢细菌Pantoea agglomerans BH18为出发菌株,利用转座子Tn7构建突变体文库.通过卡那霉素抗性筛选与PCR扩增,鉴定转座子插入突变菌株.通过初筛和复筛,获得1株突变菌TB34,其产氢量较野生菌株明显提高.在初始pH为7.0和葡萄糖浓度10 g.L-1的海水培养条件下,产氢量(H2/葡萄糖)为(2.04±0.04)mol.mol-1,相比野生菌株产氢量提高43%.经过5次连续传代培养,突变菌株TB34表现出稳定的产氢特性.测定突变菌株TB34在不同碳源培养条件下的产氢量.结果表明,突变菌株TB34和野生菌株BH18都能利用蔗糖、葡萄糖和果糖发酵产氢.与野生菌株BH18不同,突变菌株TB34在以木糖为底物培养条件下仍能够发酵产氢,产氢量(H2/木糖)为(1.34±0.09)mol.mol-1,扩大了底物利用范围.  相似文献   

10.
对采自天津潮间带的污泥进行富集培养,从混合菌群中筛选高效产絮凝细菌。经过5次平板分离,获得一株对高岭土悬浊液具有较高絮凝活性的产絮凝细菌W17。根据形态观察和16S r RNA基因序列分析,该菌株鉴定为Enterococcus sp.W17(Genebank号KP198609)。在不同碳源(葡萄糖、果糖、木糖、乳糖、纤维素和淀粉)、起始p H值(5.0~10.0)和盐度(4‰~70‰)等培养条件下,分别测定菌株W17生长和产絮凝性质。结果表明,菌株W17能够利用多种碳源进行生长和产絮凝,其中葡萄糖是菌株W17生长和产絮凝的最适碳源。在起始p H值5.0~10.0范围内,菌株W17产絮凝的最适起始p H值是6.0,絮凝率可达到(91±5.83)%。菌株W17在设定盐度范围内,都能够生长并具有产絮凝性质,该菌株表现出较强的耐盐性。在淡水和海水培养条件下,菌株W17的产絮凝率分别是(94±5.50)%和(87±5.67)%。产絮凝菌株W17有望应该用于废水特别是高盐废水的处理。  相似文献   

11.
从连续生物制氢反应器中分离得到高效产氢细菌P22,利用微生物自动鉴定仪并结合菌株16S rDNA序列分析,将其鉴定为Clostridium butyricum P22.同时还进一步研究了碳源、氮源、初始pH值和培养温度对菌株P22产氢活性的影响.结果表明:该菌株能利用多种碳源氮源产氢,当以葡萄糖作为产氢底物时,其最大产...  相似文献   

12.
以污泥与垃圾焚烧厂渗滤液为原料,通过小瓶批式试验,考察了垃圾渗滤液的添加量以及渗滤液初始pH对联合厌氧消化产氢的影响。结果表明:未添加污泥的渗滤液本身也可以在厌氧发酵过程中产氢。而污泥与垃圾渗滤液联合厌氧发酵,当渗滤液初始pH为5.20时,添加90%的渗滤液体系产氢量最大,为201.58 mL,最大产氢速率也最高,为9.56 mL/h;当初始渗滤液pH为4.47时,最大产氢量出现在渗滤液添加剂量为60%的样品,为57.73 mL,随后减小,但最大产氢速率在添加40%的渗滤液达到峰值,为5.11 mL/h。  相似文献   

13.
昌盛  刘枫 《环境科学研究》2016,29(9):1370-1377
为寻求厌氧产酸发酵反应器的适宜控制参数和微生物学机制,以ACR(厌氧接触式发酵制氢反应器)为试验平台,通过分阶段调控反应器的pH,考察不同pH下ACR系统的产酸发酵类型和产氢性能,并采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术对微生物群落结构进行了解析.以糖蜜废水为基质,以城市污水厂剩余污泥为种泥,在污泥接种量(以MLVSS计)为3.58 g/L、进水ρ(CODCr)为5 000 mg/L、HRT为12 h条件下,分别考察了系统在pH为6.0~6.5、5.5~6.0、5.0~5.5、4.5~5.0条件下的运行特性.结果表明,在pH为4.5~5.0时,系统中以Ethanoligenens harbinense YUAN-3为代表的产氢菌群占优,呈现典型的乙醇型发酵特征,活性污泥表现出的产氢性能最佳,其氢气转化率和污泥的比产氢速率分别为1.9 mol/mol和7.8 mmol/(g·d).在pH为5.5~6.5、5.0~5.5的条件下,Clostridium tyrobutyricum strain A1-3、Propionibacterium sp.B2M2分别成为优势菌群,系统分别呈现出丁酸型发酵、混合酸发酵类型.研究显示,随着pH的改变,系统内的产酸发酵菌群随之发生更迭,在不同pH控制水平下形成不同的顶级微生物群落结构,进而使得系统呈现出不同发酵类型和产氢性能.   相似文献   

14.
以剩余污泥和厨余垃圾混合进行共发酵,评估其厌氧发酵协同效果,基于挥发性固体悬浮物(VSS)设置剩余污泥和厨余垃圾比例为1:0,4:1,2:1,1:1,1:2,1:4,0:1的生化甲烷潜势(BMP)实验,通过厌氧发酵前后pH值、COD、总氮、氨氮、硝酸盐氮等参数的变化,甲烷产量,碳的迁移、转化和微生物群落结构变化评价协同产甲烷效果.结果表明,剩余污泥厌氧发酵过程中,厨余垃圾的加入能显著提升微生物的污泥降解能力,增大甲烷产量,配比为1:4时产甲烷量最大,为274.37mL/g-VSS,协同增长率达27.41%.厨余垃圾的加入,增加了产甲烷延滞期,能够促进碳元素由固相-液相-气相的转移,有利于产甲烷菌(Methansaeta)及其辅助菌种(Longilinea等)的生长繁殖.  相似文献   

15.
一些发酵型异化铁还原细菌同时具有异化铁还原与产氢的能力,该类细菌在环境污染修复的同时能够解决能源问题,具有广阔应用前景。本文以海洋沉积物中异化铁还原细菌Enterococcus sp. ZQ21为研究对象,设置不同形态Fe(Ⅲ),分析菌株ZQ21异化铁还原与产氢性质。结果表明,当氢氧化铁和柠檬酸铁为电子受体时,菌株ZQ21以柠檬酸铁为电子受体时Fe(Ⅲ)还原效率较高,其酶活性分别为3.66 U和4.40 U。同时,菌株ZQ21在异化铁还原培养体系中具有产氢能力,以柠檬酸铁和氢氧化铁为电子受体进行厌氧发酵培养时,体系累积产氢量分别为(1395.30 ± 4.79)mL/L和(174.30 ± 3.23)mL/L,均显著高于对照组[(23.20 ± 2.09) mL/L]。通过液相发酵产物分析,在柠檬酸铁和氢氧化铁不同形态Fe(Ⅲ)培养条件下,菌株ZQ21分别表现出乙醇型发酵和丁酸型发酵产氢代谢类型。菌株Enterococcus sp. ZQ21具有异化铁还原和产氢能力,进一步拓宽发酵型异化铁还原细菌种质资源。  相似文献   

16.
污泥-餐厨垃圾厌氧消化产氢产CH4可将城市有机废弃物转化为可再生能源H2、CH4,对实现碳减排发挥着重要作用。通过批式试验探究高温条件下(55±1℃),不同初始pH值对污泥和餐厨垃圾联合厌氧发酵产氢余物产CH4的影响。研究结果表明:适度地增加产氢余物的碱度会提高产CH4效能,而过低的初始pH则抑制了产氢余物产CH4效能。初始pH=8时,CH4最高浓度(79.08%)、累积产甲烷量(101 mL/g DS)和最大CH4生产速率(12.21 mL/d)均达到最大。不同初始pH下,总糖和总蛋白质的降解量跟累积产甲烷量呈正相关,其中总蛋白的降解量及降解率均高于总糖。初始pH=8时,总糖和总蛋白质的降解量及降解率最高,分别为6078 mg/L、55.70%和4710 mg/L、69.67%。不同初始pH值下,产氢余物厌氧消化后的pH都趋于7.5左右。  相似文献   

17.
有机废弃物氢发酵制备生物氢气的研究   总被引:12,自引:1,他引:11  
在批式培养实验中以有机废弃物为原料,通过厌氧生物发酵制备生物氢气研究了菌种来源、有机废弃物种类对产氢能力的影响,以及生物氢发酵过程中液相组成的变化以活性污泥为菌种来源,以淀粉为底物,在30L改进的UASB反应器中进行了放大实验,生物气中氢气浓度达40%~51%,CO2浓度为49%~60%,且没有检测到甲烷气体,生物气经碱液吸收后氢气纯度大于97%持续产氢时间超过120d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号