首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
单爱丽  王帆  严红 《环境工程》2010,28(3):91-94
堆肥过程中氮素损失比较严重,而氨气挥发是氮损失的主要途径。利用城市生活垃圾进行好氧堆肥,研究其堆肥过程中氨气变化规律及其对堆肥性质的影响。结果表明:在堆肥期间,氨气含量先增加后减小,最后基本稳定在5 mg/kg左右;而全氮含量先降低后增加;硝态氮含量先降低后增加;铵态氮是先快速增加,后缓慢减小至稳定;pH值先下降后升高,最终稳定在中性范围内;w(C)/w(N)先增加后下降;有机质含量显著下降。  相似文献   

2.
好氧发酵是有效实现畜禽粪便处理及资源化利用的有效途径,尽管好氧发酵在处理畜禽粪便过程中有很多优势,但其存在潜在的环境问题.大多数氮素是以氨气的形式挥发损失,还有少量的氧化态氮挥发,或者以硝态氮随水流失,氮的流失一方面降低了好氧发酵成品中的氮含量,也就降低了成品农学价值;另一方面成了臭气的环境污染源.本文阐述了畜禽粪便好氧发酵过程中氮素转化及主要损失途径,在实践经验的基础上,总结分析了影响好氧发酵过程中氮素损失的主要因素(包括物料初始特性、堆体环境参数、工艺条件),提出了有效控制氮素损失的调控措施.  相似文献   

3.
花卉废物和牛粪联合堆肥中的氮迁移   总被引:24,自引:2,他引:22  
以花卉废物和牛粪为原料,进行了温度反馈的通气量控制联合堆肥中的氮迁移中试研究.采用自制的静态好氧床进行一次发酵,过程控制采用温度反馈通气量控制方法,发酵周期20d;采用周期性翻堆进行物料二次腐熟,腐熟周期40d.研究了堆肥过程中总氮、有机氮、无机氮、氨氮、硝氮等氮素形态转化随时间的变化特征及温度反馈的通气量控制对氮迁移的影响.结果表明:堆肥初期的氨化作用和反硝化作用显著,氮素总量损失累计达41.98%,其中主要是有机氮的损失,99.95%的氮损失发生在一次发酵阶段;氮素损失主要是在pH和温度较高条件下的氨气大量挥发造成的.对通风进行有效控制、提高物料C/N及添加酸性物质有望减少N损失.对于C/N较低,硝态氮含量较高的物料堆肥,NH4+-N≤0.04%、NH4/NO3≤0.16不能作为腐熟度指标.  相似文献   

4.
覆盖处理对猪粪秸秆堆肥中氮素转化和堆肥质量的影响   总被引:8,自引:3,他引:5  
为了探讨覆盖措施对堆肥化中氮素转化与堆肥质量的影响,在自制的强制通风静态堆肥箱中,模拟研究了覆盖腐熟堆肥后,下层猪粪秸秆堆肥及覆盖层中氮素形态和其他腐熟度指标的变化.结果表明:覆盖处理降低了下层堆肥中的含水率、种子发芽指数(GI值)、升温期和高温期的pH值,增大了降温期后的堆肥电导率EC值,而对堆温影响不大.覆盖处理未改变堆制初期下层堆肥中氨气的释放总量,只延缓了氨气的释放时间,但明显增加了降温期后堆肥中硝态氮和有机氮的含量.在堆制期间,覆盖处理的下层堆肥中硝态氮、有机氮、总氮和总磷含量的增幅分别比对照高66.7%、33.8%、32.7%和138.6%;而有机碳降解率、铵态氮和腐殖质含量的降幅则分别比对照低1.1%、8.0%和3.7%.覆盖层中pH值、铵态氮和硝态氮含量的变化说明腐熟堆肥能够吸收下层堆肥释放的氨气并进行硝化作用;覆盖层的腐熟堆肥总体上进行了矿化作用,从而影响了下层堆肥的氮素转化过程及质量.  相似文献   

5.
复合铜盐对有机废弃物高温好氧堆肥的保氮效果   总被引:3,自引:0,他引:3  
高温好氧堆肥是资源化利用有机废弃物的途径之一,但堆肥过程中氮素损失严重.本文以复合铜盐CCS为保氮剂,粪便混合物为堆肥原料,通过单因素和正交实验,研究了C/N比(20、30、35)、含水率w(50%、55%、60%)、CCS添加量m(1.2%、1.4%、1.6%)等因素对高温好氧堆肥中氮素的影响,初步探讨了氮素固定的机理.实验结果表明,最佳氮素固定条件为:C/N=20、w=60%、m=1.4%,在此条件下,总氮损失减少率(L)高达62.78%.与其他保氮剂对比发现,复合铜盐具有添加量少、总氮损失减少率较高、成本适中等优点,表明复合铜盐适宜用作堆肥过程中的保氮剂.氮素固定的机理可能是铜离子与铵根离子络合.  相似文献   

6.
鸡粪好氧堆肥氨氧化霉菌的筛选及氮转化能力的研究   总被引:1,自引:1,他引:0  
王立群  喻其林  黄明媛 《环境科学》2010,31(11):2763-2767
为明确鸡粪好氧堆肥过程氨氧化霉菌的存在情况及其氮转化能力,以鸡粪好氧堆肥中分离的10株霉菌为对象,采用氨氧化霉菌培养基筛选氨氧化菌株;对所选菌株进行生长量及氮转化指标的测定及相关分析,以明确菌体生长与氨氧化作用的关系;对确定的高效氨氧化菌株进行氮转化能力测定,并做回归堆肥的效果验证.结果表明,所试菌株均能氧化NH4+-N生成亚硝态氮和硝态氮,证明在鸡粪好氧堆肥过程中存在氨氧化霉菌,且提示该环境的霉菌可能具有普遍的氨氧化能力;氨氧化霉菌生成的亚硝态氮和硝态氮总量、菌体干重、菌体凯氏氮量间均存在着显著的正相关;确定的2株高效氨氧化菌株M25-22(Penicilliumsp.)与M40-4(Aspergillussp.)在培养基中培养144h后,均能使NH4+-N降低0.3mg·mL-1以上,生成亚硝态氮和硝态氮总量约在1.1×10-3mg·mL-1和1.5×10-3mg·mL-1;2株菌回归堆肥后,均能使堆肥体系中NH4+-N含量明显降低,硝态氮及总氮含量明显增加,这对减少堆肥过程氮素损失具有实际意义.  相似文献   

7.
沸石粉能够通过对氨氮的物理吸附作用,降低堆肥过程中的氮素损失;硝化抑制剂(如3,4-二甲基吡唑磷酸盐,DMPP)能够抑制氨氧化细菌的活性,阻止硝化反应中铵态氮向硝态氮的转化,从而从源头减少反硝化作用而造成的氧化亚氮温室气体的排放.目前国内针对沸石粉和硝化抑制剂(DMPP)作为添加剂对污泥堆肥过程中的保氮作用研究较少,其是否能够实现污泥堆肥过程中温室气体减排也值得深入探讨.本研究以脱水污泥作为研究对象,以蘑菇渣为辅料,设置空白对照、沸石粉和硝化抑制剂(DMPP)添加组,进行21 d的堆肥试验,研究沸石粉和DMPP的添加对污泥堆肥过程的氮素损失和温室气体排放的影响.结果表明,1%的沸石粉添加(湿重)不仅可以减少5%的温室气体排放,而且能够减少2.9%的总氮损失;而DMPP的添加虽然可以减少N_2O的排放,但会显著增加CH_4及NH_3的排放,从而导致温室气体排放和氮素损失的增加.  相似文献   

8.
酸性物质对猪粪秸秆堆肥过程中氮素转化的影响   总被引:5,自引:0,他引:5  
姜继韶  尧倩 《环境科学》2017,38(3):1272-1278
了解不同酸性物质对堆肥过程中氮素转化和NH_3排放的影响,是筛选保氮添加剂的重要环节,对于堆肥中氮素控制具有重要意义.以新鲜猪粪和小麦秸秆为堆肥原料,磷肥、腐烂苹果和食用醋为添加剂,在实验室进行40 d的静态高温堆肥试验,研究堆肥过程中温度、pH、EC、GI、氮素化合物和TOC含量的变化特征.结果表明,CK、P、A和V这4个处理高温期(50℃)均持续了10 d以上,达到高温堆肥化卫生标准.添加磷肥延缓了堆体进入高温期的时间,降低了堆体的pH值,使整个过程的EC值保持较高水平.各处理氮素损失分别为53.1%、36.2%、46.5%和41.5%,主要集中在0~16 d之间,而P和V处理在16~24 d之间仍有20%左右的氮素损失.其中NH_3-N损失占氮素损失的26.0%、11.8%、21.5%和20.2%.添加酸性物质有效降低了堆肥的氮素和NH_3-N损失,其中以添加磷肥效果最好.堆肥结束时,各处理GI均达到80%以上,达到了腐熟的要求.  相似文献   

9.
超高温预处理对猪粪堆肥过程碳氮素转化与损失的影响   总被引:5,自引:0,他引:5  
以猪粪、砻糠为原料,利用自行设计的超高温预处理装置,开展了为期56d的模拟堆肥试验,比较了超高温预处理好氧堆肥(HPC)和常规高温好氧堆肥(CK)过程中碳、氮素转化及损失.结果表明,CK有机质最大降解度(42.58%)比HPC堆体(49.29%)小,但降解速率常数(0.1d-1)高于HPC(0.07d-1),两种堆肥工艺碳素降解率差异不显著.HPC堆体NH4+-N、TN质量分数平均比CK高143.9%、11.2%,而NO3--N质量分数则比CK低58.8%.HPC堆肥后期胡敏酸含量及腐殖质聚合程度分别比CK高45.2%~56.8%、59.1%~65.3%.在预处理阶段以及后续堆肥阶段,HPC、CK有机碳损失率分别为48%、51%,氮损失率分别为18%、27%.说明超高温预处理不仅有利于堆肥过程的保氮,而且促进富里酸向胡敏酸的转化,提高了堆肥产品腐殖化水平.  相似文献   

10.
餐厨垃圾堆肥理化特性变化规律研究   总被引:14,自引:5,他引:9  
餐厨垃圾主要包括厨余和泔脚,二者的化学组成、物料结构以及初始微生物量均存在差异. 对厨余和泔脚分别与相同质量比的木屑混合堆制的一次好氧堆肥过程进行了比较研究. 结果表明,在相同好氧堆肥条件下,二者的特性变化不同:与厨余堆肥系统相比,泔脚堆肥系统初始水溶性w(C)/w(N)高,堆肥pH较低,高温持续时间长,CO2释放率高,NH3挥发少,氮素损失低,堆制后堆肥含氮量升高; 但泔脚一次堆肥所需时间偏长,应采取有效方法加速其堆肥进程. 厨余堆肥系统升温快,堆肥周期短, 但生物可利用碳的短缺造成系统氮素损失量大,可采用在厨余堆肥中添加适当碳源等措施来减少氮素损失.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号