首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
马娟  王谨  俞小军  周猛  李光银  孙洪伟 《环境科学》2018,39(8):3775-3781
采用SBR反应器考察了投加不同浓度苯酚(5、10、30、50、100、150、200 mg·L~(-1))对强化生物除磷工艺(EBPR)系统除磷性能的影响.结果表明,苯酚浓度≤50 mg·L~(-1)时,COD及PO3-4-P的去除率均在85%以上,系统具有较好的污染物去除性能;而投加高浓度苯酚(≥100 mg·L~(-1)),反应器除磷性能大幅降低;当苯酚浓度为200 mg·L~(-1)时,系统仅经过22个周期便丧失除磷性能,COD平均去除率降至61.3%,且在短期内难以恢复.同时发现,长期投加苯酚导致EBPR系统污泥除磷性能受到抑制,且对好氧吸磷的抑制作用大于厌氧释磷.此外,低浓度苯酚条件下(≤50 mg·L~(-1)),因污泥对苯酚毒性逐渐适应,系统污泥微膨胀现象逐渐消失,而由高浓度苯酚引发的污泥膨胀却难以恢复.短期冲击实验表明,由投加苯酚导致的出水COD和磷浓度的波动可随着苯酚撤去而逐渐恢复,由此可知,苯酚冲击对系统除磷性能的抑制可逆.  相似文献   

2.
同时硝化/反硝化除磷工艺的脱氮除磷效能   总被引:1,自引:0,他引:1  
为实现同时硝化/反硝化除磷(SNDPR),在序批式活性污泥反应器(SBR)中,采用厌氧/好氧和厌氧/缺氧/好氧2种运行模式驯化污泥,并考察了厌氧/低氧模式下SNDPR过程中COD、PHB、TP、TN、DO和电化学参数的变化规律。结果表明,经2阶段驯化,反硝化聚磷菌比例提升至85.9%,硝化速率达5.97 mg(/L.h),实现了反硝化除磷菌和硝化菌的良好共存;在厌氧/低氧模式下,SNDPR对低碳城市污水具有良好脱氮除磷效果,TP、TN和COD去除率达到93.7%、79%和87.7%;PHB与COD降解、TN降解和TP吸收有良好的相关性,也是SNDPR过程的碳源驱动力;pH和ORP曲线上"谷点"预示厌氧释磷结束,pH曲线"折点"指示SNDPR结束。  相似文献   

3.
富磷剩余污泥厌氧消化过程中的水解与生物释磷机制   总被引:1,自引:0,他引:1  
毕东苏  郭小品  陆烽 《环境科学学报》2010,30(12):2445-2449
以某采用A/O生物除磷工艺的污水处理厂排出的富磷剩余污泥为研究对象,设计厌氧消化比较试验,讨论了富磷剩余污泥厌氧消化过程中的磷释放机制.结果发现,剩余污泥消化系统中的SOP(溶解性正磷)释放/PHA(聚羟基烷酸)合成比值大于活性污泥厌氧释磷系统,证实了剩余污泥厌氧消化过程中水解机制是磷释放的主导机制;剩余污泥消化系统中的PHA合成/糖原降解比值小于活性污泥厌氧释磷系统,表明污泥消化系统中的糖原降解不仅仅是生物释磷引起的;厌氧消化系统中抑菌剂的存在对于污泥消化系统的水解释磷机制与生物释磷机制均是不利的.  相似文献   

4.
复合生物反应器低溶解氧同步脱氮除磷   总被引:2,自引:0,他引:2  
利用复合生物反应器(HBR)中同时存在的活性污泥和悬浮生物膜混合生物体系,进行了同步脱氮除磷的试验研究.结果表明,溶解氧浓度和进水COD/TN对系统脱氮除磷效果有重要影响.当曝气量(Qair)控制在0.07m3/h时,系统的同步脱氮除磷效果较好,最大释磷率(释磷结束时溶液中PO3-4-P浓度与初始PO3-4-P浓度百分比)为249%,TN平均去除率为80.0%,PO3-4-P去除率为92.2%.曝气量升高或降低,TN、PO3-4-P去除率均降低.随着COD/TN的升高,系统TN、PO3-4-P去除率也逐渐升高,COD/TN从3.2升高至10.5,系统TN平均去除率从70.3%升高至84.9%,PO3-4-P平均去除率从82.2%高至96.0%.整个试验过程中污泥体积指数(SVI)均小于90 mL/g,污泥的沉降性能良好.实验采用复合反应器进水后未经过传统脱氮、除磷理论认为所必须的缺氧、厌氧段而直接曝气,仍然取得较高的TN、PO3-4-P去除率.  相似文献   

5.
刘小英  姜应和  郭超  彭党聪 《环境科学》2009,30(9):2655-2660
以絮状活性污泥为接种污泥,乙酸钠为碳源,在SBR反应器内采用水力筛选的方法进行生物除磷颗粒污泥培养,然后诱导为反硝化聚磷颗粒污泥,探讨2种颗粒污泥除磷特性.结果表明,在厌氧/好氧(A/O)交替运行条件下,82d后培养出生物除磷颗粒污泥,污泥颜色呈淡黄色,粒径为0.5~1.5 mm,沉速为20~30 m/h,含水率为94%,密度为1.043 9,SVI在50 mL/g以下;437d时污泥最大比释磷速率(SRPR)为67.7 mg/(g.h),最大比吸磷速率(SUPR)为43.2 mg/(g.h),污泥中总磷的含量(TP/SS)为6.5%;448 d时改变运行条件为厌氧/缺氧/好氧(A/A/O)进行反硝化聚磷试验,653 d时反硝化聚磷颗粒污泥最大SRPR为30mg/(g.h),最大缺氧SUPR为27.9 mg/(g.h),TP/SS为6.3%.生物除磷颗粒污泥和反硝化聚磷颗粒污泥具有较强的除磷能力.  相似文献   

6.
《环境科学与技术》2021,44(1):94-99
为了探究纳米氧化铜(CuO NPs)对颗粒污泥处理低C/N废水过程中脱氮除磷性能的影响,文章建立4组序批式反应器,以实际废水为探究对象,探究不同浓度CuO NPs影响下颗粒污泥特征及脱氮除磷规律。结果表明,低浓度CuO NPs(2.0 mg/L)对颗粒污泥主要特征及脱氮除磷性能影响不显著,而高浓度CuO NPs(超过10.0 mg/L)则会降低颗粒污泥生物量,提高污泥SVI,降低颗粒污泥脱氮除磷效率。当CuO NPs浓度为20.0 mg/L时,颗粒污泥稳定运行期混合液悬浮固体(MLSS)的浓度下降至4 256~4 369 mg/L,总氮和总磷的去除效率分别下降至59.3%和70.2%,均显著低于0.01 mg/L CuO NPs组别。营养盐周期变化分析表明,CuO NPs对反硝过程、厌氧释磷及好氧吸磷过程均具有显著抑制作用。此外,CuO NPs能影响颗粒污泥的主要特征,CuO NPs提高了胞外聚合物的含量,并主要提高蛋白质的含量。酶活性分析表明高浓度CuO NPs抑制了生物脱氮除磷关键酶的活性。  相似文献   

7.
污泥龄对低氧丝状菌活性污泥微膨胀系统的影响   总被引:2,自引:0,他引:2  
为了研究污泥龄(SRT)对低氧丝状菌活性污泥微膨胀系统的影响,采用序批式间歇反应器(SBR)进行试验,分别按照厌氧/好氧和单级好氧的方式运行,考察了不同SRT下丝状菌污泥微膨胀系统的沉降性、脱氮除磷过程以及污泥特性的变化.结果表明,在好氧水力停留时间充分的条件下,低氧环境不但不会影响丝状菌微膨胀污泥的硝化进程,而且还有助于同步硝化反硝化(SND)、单级好氧除磷的发生.厌氧/好氧运行时,SRT与活性污泥的比硝化速率、比释磷速率和比吸磷速率成反比,与SND率和污泥的含磷量成正比.单级好氧运行时,减小SRT对硝化过程影响不大,但是有助于改善除磷效果.活性污泥的比耗氧速率(SOUR)、胞外聚合物(EPS)中多糖与蛋白质含量的比值、以及粘度都与SRT成反比.适当地减小SRT可以改善丝状菌微膨胀污泥的沉降性.厌氧/好氧运行时,厌氧段微氧环境易引发过度丝状菌污泥膨胀;单级好氧运行时,SRT过低会造成污泥黏性骤增而引发黏性污泥膨胀.  相似文献   

8.
采用两组A/A/O方式运行的SBR反应器,溶解氧分别控制在2~4mg/L(对照组)和6~8mg/L(过量曝气组),通过试验对比研究了过量曝气对聚磷菌厌氧释磷、缺氧吸磷、好氧吸磷性能的影响。结果表明:过量曝气初期,出水磷浓度低于对照组,一周后出水磷浓度开始上升,除磷率下降了18%;过量曝气时,厌氧释磷量是对照组的1.45倍,释磷速率不变,缺氧吸磷量增加,但反硝化聚磷菌的比例减少,好氧吸磷量和吸磷速率均降低,分别为对照组的75%和68%,而内源损耗引起的无效释磷和好氧吸磷能力降低是除磷效果变差的主要原因;过量曝气使污泥的SVI值升高,平均粒径减小,出水SS略优于对照组,污泥的含磷量降低,总磷去除效果变差,长期过量曝气,将会导致生物除磷过程的恶化。  相似文献   

9.
厌氧、缺氧、好氧环境下富磷剩余污泥的释磷机制   总被引:4,自引:2,他引:2  
以采用A/O生物强化除磷工艺水质净化厂排出的富磷剩余污泥为研究对象,利用棕色消化瓶设计3组释磷试验,讨论厌氧、缺氧、好氧环境下富磷剩余污泥消化释磷的机制. 结果表明:富磷剩余污泥在厌氧和缺氧环境下均有明显的释磷现象,平均释磷速率分别为1.614和0.998 mg/(L·d);厌氧和缺氧环境下释磷量与聚β-羟基丁酸(PHB)之间的计量关系比较表明,释磷过程中包含有明显的微生物释磷机制,同时还存在着物理化学方面引起的释磷机制,硝酸盐抑制剩余污泥中磷的释放主要是通过影响其微生物学机制完成的.   相似文献   

10.
SBR中生物除磷颗粒污泥的反硝化聚磷研究   总被引:2,自引:1,他引:1  
反硝化聚磷菌(DNPAOs)可利用厌氧储存的聚.3.羟基丁酸(PHB)以硝酸盐和亚硝酸盐为电子受体进行过量吸磷和反硝化,从而达到在低碳源下脱氮除磷的双重目的.本试验在SBR反应器中,采用厌氧,缺氧/好氧(A/A/O)交替运行的方式.将富集聚磷菌(PAOs)的颗粒污泥成功地诱导为具有反硝化聚磷能力的颗粒污泥.诱导结束后P的去除率在90%以上,NOx-N的去除率在93%以上,厌氧段释磷量在25-33 mg/L,缺氧段每去除lg NOx-N吸收P约1.3 g;典型周期运行结果显示,厌氧段最大比释磷速率(SRPR)为18.39 mg/(g.h),缺氧段最大比吸磷速率(SUPR)为23.72 mg/(g·h),最大比反硝化速率(SDNR)为18.19mg/(g·h),好氧段最大SUPR为17.15 me,/(g·h):颗粒污泥中DNPAOs的数量由诱导前的14.9%增加到80.7%.与除磷颗粒污泥相比.反硝化聚磷颗粒污泥沉速提高0.16-0.7倍,比重提高0.003 1.  相似文献   

11.
针对河西地区临泽县严重的土地荒漠化问题,本文对荒漠化现状和气候变异、人类活动两大荒漠化影响因素进行统计分析,旨在探讨各因素变化对荒漠化演变的可能影响及其发展趋势。结果表明:荒漠化土地占全县总面积的64.43%,沙化危害严重。多年降水无明显趋势变化,且总量较小、分布极不均匀;气温则明显变暖,且极端气温条件恶劣;风速趋于减弱,气候的总体变化不利于荒漠化恢复。另外,自建国以来人口增长迅速,随之引起耕地面积扩张,牲畜量迅猛增长,且经济产业结构和水资源利用不合理问题突出,促使荒漠化正向扩展。综合各因素变化影响,临泽县荒漠化态势严峻,防治任务十分艰巨,人口压力、人类破坏活动和水资源不合理利用已成为导致土地荒漠化的最主要因素。因此,必须控制人口增长,加强环境保护,提高水资源利用的合理性,加大荒漠化治理力度,以期土地荒漠化局势逆转。  相似文献   

12.
本文根据四川省八大燃煤电厂粉煤灰的天然辐射水平,使用KarPov及UNSCEAR报告提供的方法,估算了全省八大电厂粉煤灰所制建材给居民带来的附加辐射剂量(0.3~1.6mSv/a),推算出全省各大电厂粉煤灰在建材中满足国家放射标准的最大允许掺和量(54%~100%)。  相似文献   

13.
本文对呼市TSP大气污染变化进行了分析,认为呼市TSP污染从2003年以来得到控制,"十五"较"九五"期间有明显的改善,采暖期TSP污染得到有效治理,并提出消除呼市大气TSP污染的有效对策.  相似文献   

14.
铝型材表面处理工艺中产生大量碱洗废液,其主要成分为NaOH与Al(OH)3,如不能有效回收,会造成严重环境污染与资源浪费。故针对含有“长寿碱蚀剂”的废液提出了生石灰处理工艺。此工艺简单,效果好,铝去除率最高可达97%,碱回收率可在80%左右,完全可以实现工业化生产。同时,该法原料价格低廉易得,实现闭路循环,而且其副产品CaCl2·2H2O、Al2(SO4)3·18H2O、CaSO4·2H2O等均有较高利用价值。  相似文献   

15.
本文着重论述了建立环保信用档案的重要性、必要性;构筑诚信理念,加强诚信建设的紧迫性;鲜明地提出了构建环保信用档案的历史必然。  相似文献   

16.
为了研究机场大气环境质量状况,在某机场选取三个监测点,在正常飞行条件下,对不同时间段污染物浓度进行监测与分析。测试结果表明:七天监测期间,机场及机场周围SO2、NO2浓度均未超标,PM10在机场内部有一天超标;各时间段SO2的贡献率在2.9%~12%,各时间段NO2的贡献率在6.9%~77%,机场飞机的尾气对周围空气质量的影响不容忽视。  相似文献   

17.
裴照堂  姚刚 《环境工程》2011,29(1):95-97
随着越来越多标准化生活垃圾填埋场的建成和投入运行,原有简易生活垃圾填埋场的环境综合治理被各级环境管理部门日益重视,成为改善环境急需解决的问题。以西北某市简易生活垃圾填埋场综合整治工程为例,通过分析简易垃圾填埋场存在的主要环境隐患,有针对性地提出了解决垃圾渗沥液、填埋气、边坡安全等环境和安全问题的具体工程措施,尽量将简易垃圾填埋场对周围环境的影响降到最低程度。  相似文献   

18.
首先正确估计样品BOD5浓度范围,并测定稀释水的溶解氧,然后根据稀释倍数公式计算3个适当的稀释倍数.与其它方法相比,本方法省时、可靠,适用性强,能够确保BOD5样品分析一次成功.在BOD5样品分析中具有广泛的应用价值.  相似文献   

19.
河流枯水流量特征研究   总被引:19,自引:0,他引:19  
本文以泾、洛、渭三河流干流在陕西境内的主要控制断面为例,分析了14个时段枯水流量的概率分布特征,选定了理论分布线型,揭示了各枯水序列的时段平均流量均值、变差系数和偏态系数的变化规律,建立了推求不同频率不同时段的枯水流量的经验公式。绘制了相应的关系曲线,应用十分方便。  相似文献   

20.
本文综合分析了以环境保护法为基本法的环境保护法律的体系,试图从环境法律关系和法律责任等方面对环境法进行法律属性的分析,得学我国环境管理体制实质上就是环境行政管理体制的结论,环境行政管理必须在法制的轨道上运行,这样才会从根本上解决环境保护的问题,才会使我们的生存环境更加美好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号