首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
武奋 《环境科学》1977,(1):32-34,40
本文叙述了用氟离子选择性电极测定废水中常、微量氟的方法,研究了其他离子的干扰,并选择了适当的掩蔽体系.方法的精密度为±5%,回收率为90—110%,测定结果与比色法较为一致.  相似文献   

2.
本文介绍的浓度比例尺法适合于测定氟离子选择电极标准曲线非线性范围内的低浓度氟化物样品,其准确度可达±7%。  相似文献   

3.
伏安法测定地下水中的氟   总被引:2,自引:0,他引:2  
本文采用三电极系统(工作电极:玻碳电极;参比电极:甘汞电极;辅助电极:铂电极)研究了Pr(Ⅲ)-ALC-F体系吸附波的特性。在pH=1.0的六次甲基四胺、硝酸溶液中,峰电位Ep=-0.66V(vs.SCE)处,峰电流与F浓度在1×10-7至1×10-5mol/L范围内呈线性关系,检出限为:8×10-8mol/L,精密度为;0.7%。本法适用于各种样品的分析,具有灵敏度高,抗干扰能力强,试验简便无毒的特点。用该方法测定了地下水中的氟离子,结果令人满意。  相似文献   

4.
采用固定电极测试状态的方法,将流动技术引入到离子电极直接电位分析法中,设计并试制了电极流动分析仪。配用市售硝酸根电极、钠电极、氟电极、氯电极和氨电极进行了环境样品的测定。结果表明,电极流动分析仪法的分析速度比直接电位法提高2-3倍,变异系数,2.9%-5.0%之间,回收率在90%-105%之间;直接电位法变异系数在2.3%-6.7%之间,加收率在90%-109%之间。  相似文献   

5.
电极法测定水中氟化物已被列为环境监测标准分析方法。为适应环境分析快速、连续和自动化测定的需要,我们将电极分析技术和连续流动测量技术相结合,建立了氟离子选择性电极连续流动测定水中氟化物的分析方法。本方法所使用的仪器设备为普通的离子计、商品电极、比例泵和自行研制的电极流通槽,装置简单,操作方便。本方法的测定速度为40样次/小时,比一般电极法提高一倍。经验证和实际样品测定,氟离子浓度在0.05~100mg/l浓度范围内,方法的相对标准偏差为1~2.7%,回收率为99.5~101.6%,与一般电极法相仿。方法的重现性和稳定性也较为满意。  相似文献   

6.
采用高温燃烧水解煤样-超纯水吸收装置,建立了高温燃烧水解-淋洗液在线发生离子色谱法同时测定煤中氟和氯的分析方法。系统、全面地考察了测定方法的影响因素,确定了最优高温燃烧水解预处理煤样和离子色谱法条件,并将该方法推广应用于飞灰、土壤和岩石的氟和氯含量检测,实验测定值与标准物质真实值误差能满足测定要求。  相似文献   

7.
本文采用三电极系统(工作电极:玻碳电极,参比电极:甘汞电极,辅助电极;铂电极)研究了Pr(Ⅲ)-ALC-F体系吸附波的特性.在pH=1.0的六次甲基四胺、硝酸溶液中,峰电位Ep=-0.66V(vs.SCE)处,峰电流与F浓度在1×10-7至1×10-5mol/L范围内呈线性关系,检出限为:8×10-8mol/L,精密度为:0.7%.本法适用于各种样品的分析,具有灵敏度高,抗干扰能力强,试验简便无毒的特点.用该方法测定了地下水中的氟离子,结果令人满意.  相似文献   

8.
建立了用离子选择电极测定粉煤灰中氟含量的方法,用硝酸钾—柠檬酸钠作为离子强度调节剂,并采用碱熔法处理样品,测定结果的相对标准偏差为1.55%~2.06%,回收率93.89%~98.35%,表明方法的准确度较高,可用于粉煤灰样品中氟的简单分析。  相似文献   

9.
潘玲 《环境科技》1994,(1):38-40
离子选择性电极直接电位法测定氟离子浓度具有设备简单,操作简便,快速等优点。其原理是氟电极的氯化镧单晶膜对氛离子产生选择性的对数响应,电位差随溶液中F-的活度改变而变化,电位变化符合能斯特(Nernst)公式,根据电位差求出样品中F-浓度。以下仅就电极法测定粮食中氛的若干问题作如下讨论。1试剂的影响总离子强度缓冲液(TISAB),其作用主要有:1.1调节离于强度;由于加入了较大量的等不干扰离子,使各样品溶液间与标准系列溶液间离子放度趋于一致,从而掩藏了各液离子浓度与活度之间的差异而引起的误差。1.2保持一定的P…  相似文献   

10.
氟电极清洗电位对样品测定结果的影响郑凤琼(玉溪地区环境科学研究所)氟是磷化工、冶金、玻璃、陶瓷等工业的主要污染物。大气中氟含量超过0.007毫克/米 ̄3,对人体健康将产生危害。目前虽然监测大气或水中氟的采样方法不同,但样品的测定多采用国家环保局198...  相似文献   

11.
氟离子选择电极在环境监测中的应用   总被引:2,自引:0,他引:2  
氟离子选择性电极测定大气、水、土壤等环境中的氟 ,克服了以往测氟方法中 (蒸馏法 ,滴定法 ,扩散法等 )的操作烦琐、费时、干扰重等缺点 ,具有操作方便、设备简单 ,灵敏度高 ,能快速连续测定等优点。  相似文献   

12.
将加标血清样本与总离子强度调整液(TISAB)1∶1体积混合后加入不同浓度的Na Cl饱和溶液,测定血清氟含量。结果显示对不同的生物血清样本,Na Cl饱和溶液添加量对氟离子选择电极测定影响程度不同;微量小牛血清样本氟含量测定时Na Cl饱和溶液的最佳加入量为20μL;大鼠血清样本氟含量测定时Na Cl饱和溶液的最佳加入量为40μL。运用此方法分别对标准添加的小牛血清和大鼠血清进行测定,结果显示该方法简便、快速,准确度和精密度均达到分析要求。  相似文献   

13.
活性氧化铝对溶液中氟离子的吸附研究   总被引:4,自引:0,他引:4  
一、前言对于含氟废水,目前常采用混凝沉淀法处理,但较难达标。由于活性氧化铝对氟表现出很强的吸附能力,因而可用于含氟废水的后级净化处理。有关以活性氧化铝作为载体,浸渍金属盐溶液制备催化剂,国内外已有大量的研究成果,但用以去除溶液中氟离子吸附研究的报道,则不多见。本文研究了氟离子的吸附等温线、溶液pH值、氧化铝粒径以及SO_4~(2-)、PO_4~(3-)、Fe~(3+)等离子与氟离子共存时对吸附的影响,并对吸附机理进行了探讨。二、实验部分 (一)仪器与试剂用HDF氟离子选择性电极、232饱和甘汞电极和PHS-2型精密酸度计,测定溶液中氟离子浓度。总离子强度调节缓冲剂(TISAB),按文献[2]配制。  相似文献   

14.
离子色谱法测定烟气中的尘态氟   总被引:1,自引:0,他引:1  
建立了一种简便、快速测定废气中尘态氟的离子色谱分析方法。用滤筒采集样品,以碳酸钠-碳酸氢钠混合液为淋洗液,用离子色谱进行样品分离,面积外标法定量。分析结果表明,该方法操作简便、离子色谱条件的线性理想,测定结果的回收率、精密度和准确度较高。适用于污染源废气尘态氟的测定。  相似文献   

15.
铅离子选择电极电位滴定法测定水中的硫化物   总被引:4,自引:0,他引:4  
利用铅离子电极作指示电极,饱和甘汞电极作参比电极,以电位计指示终点电位,用固定终点电位法测得标准硝酸铅滴定液的用量,从而求出样品中硫离子的含量。精密度0.44%~2.35%,回收率98%~109%,测定范围为10-1~103mg/L,检测下限为0.2mg/L。本法测定浓度范围较宽,稳定性强,灵敏度高  相似文献   

16.
磷钨酸光催化六氟苯脱氟的研究   总被引:2,自引:1,他引:1  
黄丽  陈悠  董文博  张仁熙  侯惠奇 《环境科学》2006,27(8):1501-1507
选择六氟苯作为目标化合物,利用266 nm脉冲激光照射磷钨酸与六氟苯的混合溶液证实了光催化转化六氟苯的可行性.结果表明,氟离子生成率与光照时间、pH值、磷钨酸初始投加量和添加物的量有关.氟离子生成率随激光脉冲次数的增加而升高.在溶液pH=1.0的条件下,氟离子生成率最高.2.0×10-4mol/L的六氟苯与5.0×10-6mol/L的磷钨酸的混合溶液在接受脉冲激光后,氟离子生成率可达208.1%.外加的氧化剂O2、KMnO4、K2S2O8可以有效氧化还原态的磷钨酸,实现整个光催化循环.溶液中存在的醇类及芳香族有机化合物不利于磷钨酸光催化转化六氟苯.  相似文献   

17.
植物叶片中氟的测定一般采用离子选择电极法,离子色谱法对其测定还鲜见报道,本文对用离子色谱方法测定植物叶片中的氟进行了探讨。  相似文献   

18.
本文用氟离子选择电极和氨气敏电极对各种水质进行连续自动监测,通过电磁阀调节,完成对电极的清洗、标定以及加液、取样、排液等操作程序,并用直流数字电压表直接显示测量池所获得的相应电位,输入到电子计算机进行计算,最后把有关数据快速连续地打印出来。  相似文献   

19.
用离子选择性电极法测定水中的氟——以EDTA作TISAB   总被引:3,自引:0,他引:3  
以EDTA作总离子活度调节剂测定地表水及废水中氟,目前国内资料尚无报导,该法线性范围较国内通常采用的柠檬酸钠法宽一个数量级。准确度较高,平均回收率为105%,精密度实验,相对标准偏差为2.88%。严格掌握好克服电极记忆效应的办法:快速冲洗,快速测定具有较好的重现性。  相似文献   

20.
以EDTA作总离子活度调节剂(TISAB)测定地表水及废水中氟,目前国内资料尚无报导,该法线性范围较国内通常采用的柠檬酸纳法宽一个数量级。准确度较高,平均回收率为105%,精密度实验,相对标准偏差为2.88%。严格掌握好克服电极记忆效应的办法:快速冲洗、快速测定具有较好的重现性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号