首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海水淡化超滤-反渗透工艺沿程溴代消毒副产物变化规律   总被引:2,自引:1,他引:1  
杨哲  孙迎雪  石娜  胡洪营 《环境科学》2015,36(10):3706-3714
研究了海水淡化超滤-反渗透(UF-RO)工艺沿程有机物和溴代消毒副产物(Br-DBPs)变化特征.该海水中含有较高浓度的Br-(45.6~50.9 mg·L-1)和较多的芳香类化合物[比紫外吸收值SUVA为3.6~6.0 L·(mg·m)-1];色氨酸类芳香族蛋白质、富里酸类有机物和溶解性微生物代谢产物是海水中主要的荧光特征有机物.UF-RO工艺进水海水经Na Cl O消毒后,DBPs的种类和浓度显著增加,且增加的主要为Br-DBPs,其中三溴甲烷(CHBr3)占总三卤甲烷(THMs)的70.48%~91.50%,二溴乙酸(Br2CHCO2H)占总卤乙酸(HAAs)的81.14%~100%,二溴乙腈(C2HBr2N)占总卤乙腈(HANs)的83.77%~87.45%.UF膜对THMs、HAAs和HANs的去除率分别为36.63%~40.39%、73.83%~95.38%和100%.RO膜可以完全去除HAAs,但是对THMs不能完全去除.进水海水的抗雌激素活性为0.35~0.44 mg·L-1,氯消毒后增加了32%~69%.海水淡化UF-RO系统生成的DBPs和其他生物毒性物质最终被截留到了UF浓水和RO浓水中.  相似文献   

2.
Algal blooms and wastewater effluents can introduce algal organic matter (AOM) and effluent organic matter (EfOM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of halogenated disinfection byproducts (DBPs) during chlorination and chloramination from various types of dissolved organic matter (DOM, e.g., natural organic matter (NOM), AOM, and EfOM) were investigated based on the data collected from literature. In general, higher formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was observed in NOM than AOM and EfOM, indicating high reactivities of phenolic moieties with both chlorine and monochloramine. The formation of haloacetaldehydes (HALs), haloacetonitriles (HANs) and haloacetamides (HAMs) was much lower than THMs and HAAs. Increasing initial bromide concentrations increased the formation of THMs, HAAs, HANs, and HAMs, but not HALs. Bromine substitution factor (BSF) values of DBPs formed in chlorination decreased as specific ultraviolet absorbance (SUVA) increased. AOM favored the formation of iodinated THMs (I-THMs) during chloramination using preformed chloramines and chlorination-chloramination processes. Increasing prechlorination time can reduce the I-THM concentrations because of the conversion of iodide to iodate, but this increased the formation of chlorinated and brominated DBPs. In an analogous way, iodine substitution factor (ISF) values of I-THMs formed in chloramination decreased as SUVA values of DOM increased. Compared to chlorination, the formation of noniodinated DBPs is low in chloramination.  相似文献   

3.
The e ects of ferric ion, pH, and bromide on the formation and distribution of disinfection byproducts (DBPs) during chlorination were studied. Two raw water samples from Huangpu River and Yangtze River, two typical drinking water sources of Shanghai, were used for the investigation. Compared with the samples from Huangpu River, the raw water samples from Yangtze River had lower content of total organic carbon (TOC) and ferric ions, but higher bromide concentrations. Under controlled chlorination conditions, four trihalomethanes (THMs), nine haloacetic acids (HAAs), total organic halogen (TOX) and its halogen species fractions, including total organic chlorine (TOCl) and total organic bromide (TOBr), were determined. The results showed that co-existent ferric and bromide ions significantly promoted the formation of total THMs and HAAs for both raw water samples. Higher concentration of bromide ions significantly changed the speciation of the formed THMs and HAAs. There was an obvious shift to brominated species, which might result in a more adverse influence on the safety of drinking water. The results also indicated that high levels of bromide ions in raw water samples produced higher percentages of unknown TOBr.  相似文献   

4.
The chemistry associated with the disinfection of aquarium seawater is more complicated than that of freshwater, therefore limited information is available on the formation and speciation of disinfection byproducts(DBPs) in marine aquaria. In this study, the effects of organic precursors, bromide(Br-) and pre-ozonation on the formation and speciation of several typical classes of DBPs, including trihalomethanes(THM4), haloacetic acids(HAAs),iodinated trihalomethanes(I-THMs), and haloacetamides(HAc Ams), were investigated during the chlorination/chloramination of aquarium seawater. Results indicate that with an increase in dissolved organic carbon concentration from 4.5 to 9.4 mg/L, the concentrations of THM4 and HAAs increased by 3.2–7.8 times under chlorination and by 1.1–2.3 times under chloramination. An increase in Br-concentration from 3 to 68 mg/L generally enhanced the formation of THM4, I-THMs and HAc Ams and increased the bromine substitution factors of all studied DBPs as well, whereas it impacted insignificantly on the yield of HAAs. Pre-ozonation with 1 mg/L O3 dose substantially reduced the formation of all studied DBPs in the subsequent chlorination and I-THMs in the subsequent chloramination. Because chloramination produces much lower amounts of DBPs than chlorination, it tends to be more suitable for disinfection of aquarium seawater.  相似文献   

5.
阿哈水库DOM的分离及其对消毒副产物的贡献   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究高原喀斯特湖库DOM(dissolved organic matter,溶解性有机质)的组成及其化学特征对DBPs(disinfection by-products,消毒副产物)生成路径的影响,以西南喀斯特地区贵阳市阿哈水库的DOM为研究对象,结合XAD大孔树脂分离技术,通过化学表征〔包括UV-Vis(紫外-可见光光谱)、FTIR(红外光谱)和3D-EEM(三维荧光光谱)〕手段来研究各组分对C-DBPs(含碳消毒副产物)和N-DBPs(含氮消毒副产物)的生成贡献.不同组分芳香性的大小依次为HON(憎水中性物)> HIB(亲水碱)> HOA(憎水酸)> HIN(亲水中性物)≈HIA(亲水酸)> HOB(憎水碱).憎水与亲水DOM的DBPs生成潜能相近.其中,HON最高,其次为HIB和HOA.HIB和HOA的主要卤代反应位分别来源于藻类有机物的蛋白质和富里酸,而HON的DBPs生成潜能的贡献主要为分子中的芳香和共轭不饱和结构.HIA和HIN的构成主要为脂肪烃,贡献较低的DBPs的生成潜能.对于C-DBPs,THMs和HAAs的生成潜能总体相近,不同组分的差异明显.对于N-DBPs,卤乙腈的生成潜能占80%以上,憎水DOM的贡献较高.DBPs的生成路径从UV-Vis、FTIR和3D-EEM的官能团和特征峰解析结果中均得到了较好的响应.   相似文献   

6.
The main objective of this study was to assess the combined use of chlorine dioxide (ClO2) and chlorine (Cl2) on the speciation and kinetics of disinfection by-product (DBP) formation in swimming pools using synthetic pool waters prepared with a body fluid analog (BFA) and/or fresh natural water. At 1:25 (mass ratio) of ClO2 to Cl2, there was no significant reduction in the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) for both BFA solution and natural water compared to the application of Cl2 alone. When the mass ratio of ClO2 to Cl2 increased to 1:1, substantial decreases in both THMs and HAAs were observed in the natural water, while there was almost no change of DBP formations in the BFA solution. Haloacetonitriles and halonitromethanes levels in both water matrices remained similar. In the presence of bromide, the overall DBP formation increased in both BFA solution and natural water. For the DBP formation kinetics, after 72 hr of contact time, very low formation of THMs and HAAs was observed for the use of ClO2 only. Compared to Cl2 control, however, applying the 1:1 mixture of ClO2/Cl2 reduced THMs by > 60% and HAAs by > 50%. Chlorite was maintained below 1.0 mg/L, while the formation of chlorate significantly increased over the reaction time. Finally, in a bench-scale indoor pool experiment, applying ClO2 and Cl2 simultaneously produced less THMs compared to Cl2 control and kept chlorite at < 0.4 mg/L, while HAAs and chlorate accumulated over 4-week operation period.  相似文献   

7.
Many drinking water treatment plants in the U.S. have switched from chlorination to chloramination to lower levels of regulated trihalomethane (THM) and haloacetic acid (HAA) disinfection byproducts (DBPs) in drinking water and meet the current regulations. However, chloramination can also produce other highly toxic/carcinogenic, unregulated DBPs: iodo-acids, iodo-THMs, and N-nitrosodimethylamine (NDMA). In practice, chloramines are generated by the addition of chlorine with ammonia, and plants use varying amounts of free chlorine contact time prior to ammonia addition to effectively kill pathogens and meet DBP regulations. However, iodo-DBPs and nitrosamines are generally not considered in this balancing of free chlorine contact time. The goal of our work was to determine whether an optimal free chlorine contact time could be established in which iodo-DBPs and NDMA could be minimized, while keeping regulated THMs and HAAs below their regulatory limits. The effect of free chlorine contact time was evaluated for the formation of six iodo-trihalomethanes (iodo-THMs), six iodo-acids, and NDMA during the chloramination of drinking water. Ten different free chlorine contact times were examined for two source waters with different dissolved organic carbon (DOC) and bromide/iodide. For the low DOC water at pH 7 and 8, an optimized free chlorine contact time of up to 1 h could control regulated THMs and HAAs, as well as iodo-DBPs and NDMA. For the high DOC water, a free chlorine contact time of 5 min could control iodo-DBPs and NDMA at both pHs, but the regulated DBPs could exceed the regulations at pH 7.  相似文献   

8.
Anion exchange resins (AERs) with different properties were evaluated for their ability to remove dissolved organic matter (DOM) and bromide, and to reduce disinfection by-product (DBP) formation potentials of water collected from a eutrophic surface water source in Japan. DOM and bromide were simultaneously removed by all selected AERs in batch adsorption experiments. A polyacrylic magnetic ion exchange resin (MIEX) showed faster dissolved organic carbon (DOC) removal than other AERs because it had the smallest resin bead size. Aromatic DOM fractions with molecular weight larger than 1600 Da and fluorescent organic fractions of fulvic acid- and humic acid-like compounds were efficiently removed by all AERs. Polystyrene AERs were more effective in bromide removal than polyacrylic AERs. This result implied that the properties of AERs, i.e. material and resin size, influenced not only DOM removal but also bromide removal efficiency, MIEX showed significant chlorinated DBP removal because it had the highest DOC removal within 30 rain, whereas polystyrene AERs efficiently removed brominated DBPs, especially brominated trihalomethane species. The results suggested that, depending on source water DOM and bromide concentration, selecting a suitable AER is a key factor in effective control of chlorinated and brominated DBPs in drinking water.  相似文献   

9.
以取自河南省郑州市石佛原水厂的黄河原水为研究对象,系统研究了原水中消毒副产物(DBPs)前体物的组成规律,对比分析了3种预氧化剂(高锰酸钾、自由氯和二氧化氯)对原水中DBPs生成潜能的消减规律.试验结果表明:原水中DBPs的前体物均以小分子有机物和疏水性组分(52.51%)为主;分子量小于1 k Da有机物组分是生成含氮消毒副产物(N-DBPs)和三卤甲烷(THMs)的主要前体物;疏水性有机物是生成THMs的主要前体物,亲水性有机物是生成N-DBPs的主要前体物.经Cl2预氧化后,直接生成的DBPs随着自由氯投加量的增加而增加,Cl O2和KMn O4预氧化直接增加DBPs产生量.经3种预氧化剂氧化后,原水中三卤甲烷生成潜能(THMFP)均呈现一定的下降,其降低量依次为Cl O2Cl2KMn O4;然而3种预氧化剂都不能有效的减少含氮消毒副产物生成潜能(N-DBPFP),Cl O2预氧化和Cl2预氧化可增加N-DBPs生成潜能,尤其在较高投加量下,Cl2预氧化将大大增加N-DBPs生成潜能.为有效消减总DBPs生成潜能,水厂可优先采用KMn O4或Cl O2作为预氧化剂处理引黄水库或沉砂池水.  相似文献   

10.
以氨基酸为代表的溶解性含氮有机物在水源水中广泛存在,成为制水工艺消毒副产物的主要前体物之一.选取色氨酸(Trp)为含氮前体物模型,考察了其在消毒工艺中产生受控消毒副产物的途径及影响因素.结果表明,Trp氯化过程经取代,脱羧,水解等一系列反应,可生成卤乙酸(HAAs),三卤甲烷(THMs)等消毒副产物.THMs和HAAs的生成量随加氯量增加;随接触时间的延长逐渐增加.温度的升高,HAAs的生成量先增大后减少;碱性条件有利于THMs和HAAs的生成.氯胺消毒和遮光条件下可明显减少THMs和HAAs的产生.  相似文献   

11.
Water disinfection is an essential process that provides safe water by inactivating pathogens that cause waterborne diseases. However, disinfectants react with organic matter naturally present in water, leading to the formation of disinfection by-products (DBPs). Multi-analyte methods based on mass spectrometry (MS) are preferred to quantify multiple DBP classes at once however, most require extensive sample pre-treatment and significant resources. In this study, two analytical methods were developed for the quantification of 32 regulated and unregulated DBPs. A purge and trap (P&T) coupled with gas chromatography mass spectrometry (GC-MS) method was optimized that automated sample pre-treatment and analyzed volatile and semi-volatile compounds, including trihalomethanes (THMs), iodinated trihalomethanes (I-THMs), haloacetonitriles (HANs), haloketones (HKTs) and halonitromethanes (HNMs). LOQs were between 0.02-0.4 µg/L for most DBPs except for 8 analytes that were in the low µg/L range. A second method with liquid chromatography (LC) tandem mass spectrometry (MS/MS) was developed for the quantification of 10 haloacetic acids (HAAs) with a simple clean-up and direct injection. The LC-MS/MS direct injection method has the lowest detection limits reported (0.2-0.5 µg/L). Both methods have a simple sample pre-treatment, which make it possible for routine analysis. Hyperchlorination and uniform formation conditions (UFC) formation potential tests with chlorine were evaluated with water samples containing high and low TOC. Hyperchlorination formation potential test maximized THMs and HAAs while UFC maximized HANs. Ascorbic acid was found to be an appropriate quencher for both analytical methods. Disinfected drinking water from four water utilities in Alberta, Canada were also evaluated.  相似文献   

12.
饮用水消毒副产物分析及相关研究进展   总被引:8,自引:0,他引:8  
饮用水消毒副产物(DBPs)是消毒剂和一些天然有机物(NOM)反应生成的化合物,主要包括三卤甲烷(THMs)、卤代G@(HAAs)、卤代乙腈(HANs)和致诱变化舍物(MX)4类。本文针对氯、氯胺、二氧化氯、臭氧4种主要消毒方式产生的消毒副产物,讨论了有关分析技术的发展过程,从DBPs的前处理技术、分析技术等角度,介绍了DBPs研究领域近期所取得的进展,并展望了今后研究的发展方向。  相似文献   

13.
The effects of addition of calcium hydroxide on aluminum sulphate(or alum) coagulation for removal of natural organic matter(NOM) and its subsequent effect on the formation potentials of two major types of regulated disinfection byproducts(DBPs),haloacetic acids(HAAs) and trihalomethanes(THMs),have been examined.The results revealed several noteworthy phenomena.At the optimal coagulation pH(i.e.6),the coagulation behavior of NOM water solutions versus alum dose,showed large variation and a consequent great change in the formation potentials of the DBPs at certain coagulant doses.However,with addition of a relatively small amount of Ca(OH) 2,although the zeta potential of coagulated flocs remained almost the same,NOM removal became more consistent with alum dose.Importantly,also the detrimental effect of charge reversal on NOM removal at the low coagulant dose disappeared.This resulted in a steady decrease in the formation potentials of DBPs as a function of the coagulant dose.Moreover,the addition of Ca(OH) 2 broadened the pH range of alum coagulation and promoted further reduction of the formation potentials of the DBPs.The enhancement effects of Ca(OH) 2 assisted alum coagulation are especially pronounced at pH 7 and 8.Finally,synchronous fluorescence spectra showed that the reduction in DBPs formation potential by Ca(OH) 2-assisted alum coagulation was connected to an enhanced removal of small hydrophobic and hydrophilic HA molecules.Ca(OH) 2-assistance of alum coagulation appeared to increase substantially the removal of the hydrophilic HA fraction responsible for HAAs formation,prompting further reduction of HAA formation potentials.  相似文献   

14.
长江沿线城市水源氯(胺)化消毒副产物生成潜能研究   总被引:3,自引:0,他引:3  
黄河  徐斌  朱文倩  秦朗  马玉英 《中国环境科学》2014,34(10):2497-2504
以长江上游重庆、中游武汉、下游上海等大城市的长江饮用水源为研究对象,在对溶解性有机物分子量和亲疏水性分离的基础上,分别采用氯和氯胺两种方式消毒,对比分析了相同时期沿江这些城市原水中氯(胺)化常规和新兴含氮消毒副产物生成潜能的分子组成规律.研究表明,重庆、武汉、上海三地的溶解性有机物均以小分子前体物为主,主要分布在<1kDa的区间内,且以强疏水性成分和亲水性成分为主,原水经氯(胺)化可产生三卤甲烷、卤乙酸、卤乙腈、三氯硝基甲烷等类型的消毒副产物;三地的氯(胺)化主要的含碳消毒副产物(C-DBPs)和含氮消毒副产物(N-DBPs)生成潜能均在<1kDa的区间内最大,从上游到下游,在<1kDa的区间内的生成潜能占各自总潜能比例逐渐增加.三地的氯(胺)化的C-DBPs和N-DBPs生成潜能均以强疏水性组分或亲水性组分为主,且氯胺化可导致亲水性组分C-DBPs和N-DBPs生成潜能所占总量比例增加.  相似文献   

15.
Eight typical drinking water supplies in China were selected in this study. Both source and tap water were used to investigate the occurrence of chlorinated disinfection byproducts (DBPs), and seasonal variation in the concentrations of trihalomethanes (THMs) of seven water sources was compared. The results showed that the pollution level for source water in China, as shown by DBP formation potential, was low. The most encountered DBPs were chloroform, dichloroacetic acid, trichloroacetic acid, and chlorodibromoacetic acid. The concentration of every THMs and haloacetic acid (HAA) compound was under the limit of standards for drinking water quality. The highest total THMs concentrations were detected in spring.  相似文献   

16.
Dissolved organic matter(DOM) has been identified as precursor for disinfection by-products(DBPs) formation during chlorination. Recently,it has been demonstrated that the characteristics of DOM influence the DBPs formation mechanism. A study was,therefore,initiated to investigate the effects of DOM fractions on DBPs formation mechanism. In the chlorination process,organic acids are dominant precursors of total thihalomethanes(TTHM) because of the νC-O and unsaturated structures. Furthermore,the TTHM format...  相似文献   

17.
水中溴离子对氯化消毒副产物的影响   总被引:4,自引:1,他引:4  
根据我国某城市饮用水中三卤甲烷类物质的现状,对水中Br^-的存在,Br^-对THMs,卤代乙酸类物质形成的影响以及THMs,HAAs形成的机理等进行综述,且提出了控制饮用水氯化消毒副产物的相应对策。  相似文献   

18.
Raw water from the Songhua River was treated by four types of coagulants, ferric chloride(FeCl3), aluminum sulfate(Al2(SO4)3),polyaluminum chloride(PACl) and composite polyaluminum(HPAC), in order to remove dissolved organic matter(DOM). Considering the disinfection byproduct(DBP) precursor treatability, DOM was divided into five chemical fractions based on resin adsorption.Trihalomethane formation potential(THMFP) and haloacetic acid formation potential(HAAFP) were measured for each fraction. The results showed that hydrophobic acids(HoA), hydrophilic matter(HiM) and hydrophobic neutral(HoN) were the dominant fractions.Although both HoN and HoA were the main THM precursors, the contribution for THMFP changed after coagulation. Additionally,HoA and HiM were the main HAA precursors, while the contribution of HoN to HAAFP significantly increased after coagulation.HoM was more easily removed than HiM, no matter which coagulant was used, especially under enhanced coagulation conditions.DOC removal was highest for enhanced coagulation using FeCl3 while DBPFP was lowest using PACl. This could indicate that not all DOC fractions contained the precursors of DBPs. Reduction of THMFP and HAAFP by PACl under enhanced coagulation could reach51% and 59% respectively.  相似文献   

19.
饮用水中卤乙酸生成的影响因素及检测方法   总被引:2,自引:0,他引:2  
卤乙酸作为已检出的氯化消毒副产物中最具致癌性的一类物质,在饮用水的研究中得到了越来越多的重视。本文从卤乙酸的生成机理及其影响因素、检测方法入手,对卤乙酸的研究进行了概述,并着重分析了影响卤乙酸生成的各种影响因素以及其检测方法的优化。  相似文献   

20.
Pre-oxidation has been reported to be an effective way to remove algal cells in water, but the released algal organic matter (AOM) could be oxidized and lead to the increment in disinfection by-product (DBP) formation. The relationship between pre-oxidation and AOM-derived DBP formation needs to be approached more precisely. This study compared the impact of four pre-oxidants, ozone (O3), chlorine dioxide (ClO2), potassium permanganate (KMnO4) and sodium hypochlorite (NaClO), on the formation of nitrogenous (N-) and carbonaceous (C-) DBPs in AOM chlorination. The characterization (fluorescent properties, molecular weight distribution and amino acids concentration) on AOM samples showed that the characterization properties variations after pre-oxidation were highly dependent on the oxidizing ability of oxidants. The disinfection experiments showed that O3 increased DBP formation most significantly, which was consistent with the result of characterization properties variations. Then canonical correspondent analysis (CCA) and Pearson's correlation analysis were conducted based on the characterization data and DBP formation. CCA indicated that C-DBPs formation was highly dependent on fluorescent data. The formation of haloacetic acids (HAAs) had a positive correlation with aromatic protein-like component while trichloromethane (TCM) had a positive correlation with fulvic acid-like component. Pearson's correlation analysis showed that low molecular weight fractions were favorable to form N-DBPs. Therefore, characterization data could provide the advantages in the control of DBP formation, which further revealed that KMnO4 and ClO2 were better options for removing algal cells as well as limiting DBP formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号