首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 375 毫秒
1.
模拟电子垃圾热回收处理过程,将丙烯腈-丁二烯-苯乙烯塑料(ABS)、四溴双酚A(TBBPA)分别与4种金属(Cu、Fe、Zn和Ni)进行混合,在自制的加热装置内开展了不同气氛、不同温度条件下热解实验研究。对产物溴代二噁英(PBDD/Fs)检测显示,2,3,7,8-TBDF、2,3,7,8-TBDD及1,2,3,4,7,8-与1,2,3,6,7,8-Hx BDD为主要产物,其中2,3,7,8-TBDF含量最高,约占总PBDD/Fs的12%~90%。反应生成的8种2,3,7,8-PBDD/Fs浓度范围为0.05~2 082 ng·g-1。在同等实验条件下,温度升高有利于ABS塑料混合物中PBDD/Fs的生成。Cu、Fe、Zn和Ni四种金属都具有催化效应。空气、氮气气氛下热解实验显示,空气气氛下PBDD/Fs的生成量大,2种条件下生成的二噁英总量比值在0.8~99.6之间变化。无金属催化条件下此比值变化范围较小,为0.8~1.5;在金属参与条件下,此比值变化范围加大,为1.2~99.6;其中,在Cu和Fe参与下,此比值较高。各种热解条件下形成的PBDD/Fs都具有PBDFsPBDDs的特征。研究结果说明,虽然无金属参与条件下含TBBPA的ABS热解生成溴代二噁英浓度较低,但金属(如Cu等)存在时,此类污染物的浓度显著增加。  相似文献   

2.
以追求产氢及降解有机污染物作为协同目标,利用一套连续式超临界水气化装置,在设定压力24MPa,反应温度400-500℃,反应停留时间20-120 s条件下,以Ni/ZrO2为催化剂考察了聚乙烯醇(PVA)水溶液的超临界水气化产氢特性.实验结果显示,催化剂Ni/ZrO2能有效促进PVA水溶液的分解产生富氢气体,气体产物中氢气的含量最高可达81.40%.过程探索发现:反应温度的升高能提高PVA气化效率,但气体产物中H2的含量随反应温度的升高有所下降;随着反应温度的升高,PVA分解趋于彻底,在压力24MPa、温度500℃、停留时间120 s的条件下,TOC去除率、有机碳气化率和氢气化率分别达到71.46%,67.97%和157.24%;停留时间的变化对气体产物含量没有明显的影响,但延长停留时间能提高PVA的气化效率;PVA气化反应中间产物主要为链状烷烃、环烷烃、芳香烃及小分子酸,根据中间产物出现的顺序推测PVA的降解为由C-C键断裂形成小分子物质,这些小分子物质一部分转化为H2,CO,CH4和CO2,一部分形成难降解的芳香族化合物.  相似文献   

3.
利用连续流釜式超临界水反应器,以聚乙二醇(PEG)模拟废水为研究对象,研究PEG浓度、反应温度、停留时间以及KOH催化剂对含PEG废水的超临界气化产H2特性的影响.结果表明,气体产物主要成分为H2,CH4,CO和CO2,在500℃,压力25MPa,停留时间50s的条件下,TOC去除率、碳气化率和氢气化率分别达到98.56%,98.33%和141.82%;PEG浓度的升高会导致气化效率下降,反应温度的上升和停留时间的延长对气化效率有正影响.KOH催化剂的加入可以温和反应条件,提高气化效率,消除CO的产生并使气体产物中部分CO2以无机盐形式固定,从而提高了产物中有效组分H2的相对含量.在450℃,压力25MPa,停留时间30s,KOH浓度800mg·l-1时,TOC去除率和氢气化率分别为91.08%和186.06%,含PEG废水在超临界状态下可转化为富氢气体.  相似文献   

4.
利用激光光散射技术,研究了不同条件下Ferton反应中Fe(Ⅲ)水解过程的粒径变化,并和一般铁盐体系中Fe(Ⅲ)水解过程进行了比较,结果表明,Fe(Ⅲ)的水解过程中,粒径变化受水解度B^*和铁盐浓度的影响,即B^*值愈大,浓度愈高,体系粒径愈大.并且在相同浓度和水解度B^*的条件下,Fenton反应生成的Fe(Ⅲ)比一般铁盐的水解聚合迅速,形成的粒径大,对采油废水进行处理的实验结果表明,Fenton体系对有机物的吸附去除效果明显优于常规铁盐体系,这可能与Fenton体系的高水解速率有关。  相似文献   

5.
合成气(主要包括CO、H_2和CO_2)通过生物转化生产高附加值的生物燃料和化学品已引起人们广泛关注,微生物菌群作为生物转化的酶催化剂对合成气发酵产物组成和效率十分关键.通过富集得到高温条件下分别稳定转化CO、甲酸钠和合成气的厌氧菌群,探究CO与甲酸钠转化菌混培物和合成气转化菌发酵合成气生成乙酸的能力,并分析其微生物群落结构.结果显示,CO-甲酸钠转化菌混培物与合成气转化菌在合成气发酵前期主要进行CO的产氢反应生成H_2和CO_2以及同型产乙酸反应生成乙酸,CO利用率为100%,CO反应速率分别为6.93和6.34 mmol L~(-1)d~(-1);随后同型产乙酸菌利用H_2和CO_2继续合成乙酸,两者的乙酸最大累积量分别为9.11 mmol/L和8.01 mmol/L.CO-甲酸钠转化菌混培物主要菌群为Thermoanaerobacterium、Romboutsia、Ruminococcus、Clostridium、Eubacterium、Moorella和Desulfotomaculum属,合成气转化混菌则主要含有Romboutsia、Thermoanaerobacterium、Moorella、Eubacterium、Acetonema和Clostridium属,其中同型产乙酸菌广泛分布于Ruminococcus、Clostridium、Eubacterium、Moorella和Acetonema属.本研究表明复配CO和甲酸钠转化菌可用于合成气高温发酵产乙酸,且转化能力优于合成气转化菌,结果可为合成气混菌发酵提供微生物资源和技术参考.  相似文献   

6.
pH值与乙酸对易腐有机垃圾水解过程的抑制   总被引:1,自引:0,他引:1  
通过外部添加水解酶比较和区分pH值和乙酸对水解的影响,结果表明:以固相挥发性固体和元素碳的减少以及液相有机碳的增加表征水解率,在pH=7时最大,144h的水解率可达66.9%;与pH=7相比,pH=8-9时,水解率降低8%-24%;pH=5-6,水解率降低40%-60%.20g·l-1乙酸的加入抑制了水解,在不同pH值条件下与不添加乙酸的水解相比,抑制程度为2%-35%,pH=7时乙酸的抑制最显著,可达35%.颗粒态物料的水解过程动力学符合Chen-Hashimoto公式.  相似文献   

7.
于颖  于俊清  严志宇 《环境化学》2013,32(3):486-491
利用实验室微波加热装置,研究了微波功率、椰壳活性炭(微波受体)添加量和反应气氛条件对污泥(含水率:76.8%)热解产物产量和特性的影响.结果表明,足够的微波辐照强度和7.5%以上的活性炭添加量可实现污泥的快速热裂解.污泥升温速率越快,生物油和合成气的产率越高.快速热裂解过程中生物油的产率超过8.5%,合成气的产率超过8.0%,并且合成气中H2和CO的体积之和超过总气体体积的50%.生物油主要生成于污泥150—250℃升温阶段,合成气主要生成于污泥150—400℃升温阶段.与通空气(少量O2存在条件)相比,氮气气氛更有利于污泥热解生成生物油,并可大幅度降低CO2的生成量,因此有利于合成气品质的提高.  相似文献   

8.
油田含油污泥热解产物分析及性能评价   总被引:3,自引:1,他引:2  
选择高含油的孤岛采油厂联合站堆放场含油污泥进行热解处理研究,采用正交实验对热解工艺进行了优化;采用ICP-MS、元素分析仪、气相色谱仪、EPS-MS对热解气体产物和残渣进行分析;热解残渣经过后续处理进行了烟气脱硫性能评价.正交实验结果表明热解最佳工艺条件为:N2保护下,热解温度600℃,热解时间4h,升温速率5℃.min-1,此时苯吸附值为47.04mg.g-1,热解残渣含油量为0.21%.最佳工艺条件下,热解油产率可达11%左右,回收率约75%,热解油的品质较好,产生的不凝气体可以作为洁净燃料气或合成气原料;热解残渣经过处理后可用于脱除烟气中的SO2,吸附脱硫能力较好,并具有进一步改进和提高的潜力.  相似文献   

9.
油田含油污泥的低温热解   总被引:2,自引:0,他引:2  
在石油开采、集输和炼制过程中产生了大量的含油污泥,如果处置不当,将造成严重的环境污染.因此,研究含油污泥的无害化和资源化处理新技术是当务之急.含油污泥热解技术具有处置彻底、二次污染少等优点,是一种应用前景广阔的处理方法[1].本文制备了掺杂钯的钛氧化物介孔分子筛催化剂MCM41,利用真空管式热解炉对延长油田含油污泥进行低温热解,重点研究了热解条件和催化剂MCM41对油回收率和回收油中组分分布的影响.  相似文献   

10.
为研究干玉米秸秆和废弃白菜在不同季节温度条件下的混合贮存品质差异性,参考西北地区气候条件设置低温(-3±1℃,LX)、室温(18±1℃,RX)和中温(34±1℃,MX)3个处理组,连续混贮90 d,间隔一定时间分析感官质量、有机组分和发酵品质,并利用Illumina Miseq高通量测序技术考察混贮发酵期间微生物菌群的动态变化.结果表明,混贮30 d时,RX和MX组中干物质和乳酸含量显著高于LX组(P 0.05),氨态氮/总氮和可溶性碳水化合物、纤维素含量显著低于LX组(P 0.05).贮存90 d时,RX组的中性洗涤纤维含量、pH值及氨态氮/总氮均显著低于LX和MX组(P 0.05).贮存3个月期间,RX组的乳酸/乙酸和乳酸/总有机酸比值始终高于LX组和MX组,乳酸发酵强度较高;3个处理组的生物降解潜力均高于原料,丁酸含量很低,感官质量均为优等,费氏评分等级为好或很好,均达到优良贮存品质.微生物群落结果显示,3个处理组中门水平优势菌为变形菌(Proteobacteria)和厚壁菌(Firmicutes),且LX和RX组中的厚壁菌门相对丰度较原料明显升高;属水平优势菌为肠杆菌(Enterobacteriaceae)、乳杆菌(Lactobacillus)、肉食杆菌(Carnobacterium)及明串珠菌(Leuconostoc),且LX和RX组中的肠杆菌等腐败菌相对丰度低于MX组,乳杆菌、明串珠菌和肉食杆菌等乳酸细菌的相对丰度高于MX组.本研究表明在室温(18±1℃)条件下混贮更有利于提高乳酸发酵强度,抑制腐败菌生长,从而使有机酸和有机组分得到优化重组,实现较高贮存品质.结果可为干玉米秸秆和废弃白菜在不同季节的处理利用提供理论基础.(图5表9参36)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号