首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Australia and most other invaded locations, rates of range expansion by the European shore crab, Carcinus maenas, are typically only a few kilometres per year, despite a planktonic duration upwards of 50 days and off-shore larval development. This relatively static distribution is punctuated by rare episodes of long-distance and large-scale spread, some of which appear to be related to unusual oceanographic conditions and some of which are likely to be human assisted. These observations suggest, first, that long planktonic duration and off-shore development in a marine invertebrate does not preclude very localised recruitment, and, second, that this recruitment norm may be punctuated by brief episodes of wide scale mixing of propagules. Punctuated dispersal has previously been suggested to account for large-scale biogeographic patterns of distribution and speciation, but may also have implications for the processes that stabilise structured spatial metapopulations.  相似文献   

2.
Larval development rate predicts range expansion of an introduced crab   总被引:1,自引:0,他引:1  
Introduced populations can cause ecological and economic damage and are difficult to eradicate once they have established. It is therefore important to be able to predict both where species may become established and their capacity to spread within recipient regions. Here, we use a new method to assess potential for intraregional spread of a marine crab introduced to North America, Carcinus maenas. We determined survivorship and development rates throughout a range of temperatures in the laboratory for C. maenas larvae from non-native populations on the Atlantic and Pacific coasts of North America. The larvae exhibited narrower physiological tolerances than adults, and no lab-cultured larvae completed larval development below 10.0°C or above 22.5°C. Survivorship peaked at intermediate water temperatures of 12.5–20.0°C, and development time decreased with increasing temperatures within this range. Based upon these laboratory development rates, we used nearshore sea-surface temperature data from both coasts of North America to predict development times required for larvae at different months and sites. Taken together, survivorship and development data indicate that C. maenas has the capacity to continue its northward spread and establish populations at numerous additional sites in North America. Moreover, decadal temperature data at two Alaskan sites predicted little variability in development duration across years, suggesting that development duration predictions are robust to interannual water temperature differences.  相似文献   

3.
Current behaviour-based interference models assume that the predator population is infinitely large and that interference is weak. While the realism of the first assumption is questionable, the second assumption conflicts with the purpose of interference models. Here, we tested a recently developed stochastic version of the Beddington–DeAngelis functional response—which applies to a finite predator population without assuming weak interference—against experimental data of shore crabs (Carcinus maenas) foraging on mussels (Mytilus edulis). We present an approximate maximum likelihood procedure for parameter estimation when only one focal individual is observed, and introduce ‘correction factors’ that capture the average behaviour of the competing but unobserved individuals. We used the method to estimate shore crab handling time, interaction time, and searching rates for prey and competitor. Especially the searching rates were sensitive to variation in prey and competitor density. Incorporating constant parameter values in the model and comparing observed and predicted feeding rates revealed that the predictive power of the model is high. Our stochastic version of the Beddington–DeAngelis model better reflects reality than current interference models and is also amenable for modelling effects of interference on predator distributions.  相似文献   

4.
Understanding the scale of marine population connectivity is critical for the conservation and sustainable management of marine resources. For many marine species adults are benthic and relatively immobile, so patterns of larval dispersal and recruitment provide the key to understanding marine population connectivity. Contrary to previous expectations, recent studies have often detected unexpectedly low dispersal and fine-scale population structure in the sea, leading to a paradigm shift in how marine systems are viewed. Nonetheless, the link between fine-scale marine population structure and the underlying physical and biological processes has not been made. Here we show that patterns of genetic structure and population connectivity in the broadcast-spawning and long-distance dispersing sea urchin Centrostephanus rodgersii are influenced by physical oceanographic and geographic variables. Despite weak genetic differentiation and no isolation-by-distance over thousands of kilometers among samples from eastern Australia and northern New Zealand, fine-scale genetic structure was associated with sea surface temperature (SST) variability and geography along the southeastern Australian coast. The zone of high SST variability is characterized by periodic shedding of eddies from the East Australian Current, and we suggest that ocean current circulation may, through its influence on larval transport and recruitment, interact with the genetic consequences of large variance in individual reproductive success to generate patterns of fine-scale patchy genetic structure. If proven consistent across species, our findings suggest that the optimal scale for fisheries management and reserve design should vary among localities in relation to regional oceanographic variability and coastal geography.  相似文献   

5.
Interference competition for limited habitat or refuges is known to produce density-dependent mortality and generate patterns of micro-habitat distribution. While in mobile species the outcome of interference at a local scale can usually be determined from differences in body size and behavior, the population-level consequences of such interactions vary depending on rates of settlement and recruitment at a site, which are not directly correlated to local reproductive success. Previous experimental studies in central Chile demonstrated that interference competition for refuges is the primary factor driving microhabitat segregation between the predatory crabs Acanthocyclus gayi and Acanthocyclus hassleri, with the latter species monopolizing galleries inside mussel beds and excluding A. gayi to rock crevices. Between April 2001 and March 2006 we quantified monthly recruitment rates in artificial collectors at 17 sites over 900 km of the central coast of Chile. Results show that recruitment rates of A. hassleri are almost two orders of magnitude lower than those of A. gayi, and that they are tightly and positively correlated among sites across the region, suggesting that at scales of kilometers larval stages of these species are affected by similar oceanographic processes. Total crab densities per site were also positively correlated between species and strongly associated to mussel cover, with overall low crab densities at all sites where mussel cover was lower than about 60%. At all sites with mussel cover >60%, the ratio of A. gayi to A. hassleri density progressively decreased from recruits (2.6) to juveniles (0.5) to adults (0.04), overcoming initial differences in recruitment rates. The relative success of the inferior competitor at sites with low mussel cover does not appear to provide a potential mechanism favoring regional coexistence through dispersal to other sites (“mass effects”), because their densities were lower than at sites of high mussel cover. Yet, at many sites of low mussel cover the dominant competitor is virtually absent, allowing A. gayi to attain larger population sizes at the scale of the region. Thus, the factors limiting the dominant competitor from successfully utilizing other microhabitats seem to be the most critical factor in promoting both local and regional coexistence between these species.  相似文献   

6.
Bivalves demonstrate various morphological and behavioural adaptations to reduce the risk of being attacked by predators. This paper examines how the presence of the crab Carcinus maenas (L.), a natural predator of the cockle Cerastoderma edule (L.), affects its burrowing depth and clearance or feeding rate. Cockles were placed in experimental tanks and treated with three levels of predatory disturbance: (1) unfed crab loose inside the tank, (2) unfed crab inside a cage suspended in the water column and (3) no crab present. Cockles’ burrowing depth was measured in two sediment types: mud and sand. Cockles burrowed more deeply in treatments with no crabs. Burrowing depth in sand was significantly greater than in mud. Two factors may contribute to the reduction in burial depth of C. edule in the presence of C. maenas: the change in the vertical orientation of the cockle and the ‘cough response’. No significant difference was found in the cockles’ clearance rate among the different levels of predator threat.  相似文献   

7.
Our study examines the potential impact of the European green crab Carcinus maenas on communities of coastal embayments of western North America. We document the current distribution and range expansion of this species beyond San Francisco Bay, where C. maenas first became established along this coast in 1989–1990, and we test the effect of C. maenas predation on different species and sizes of infaunal invertebrates in field and laboratory experiments. In our samples from eight coastal locations in central California collected between June 1993 and May 1994, we found no green crabs at the two closest embayments south of San Francisco Bay and found the crabs in all four embayments sampled within 120 km north of San Francisco Bay, up to and including Bodega Harbor. C. maenas was not present in samples from sites farther north. This northward range expansion is apparently the result of larval recruitment by a single cohort, corresponding to the predominant northern transport of surface waters and the approximate distance water moves during larval green crab development. At Bodega Harbor, the current northern range limit, the C. maenas population is now well established and reproducing. Females and males became sexually mature within their first year at 40 mm carapace width, molting approximately monthly from summer through fall, and females were ovigerous in late fall of their first year at 50 mm. We expect larvae from this population to recruit locally and to the north, promoting episodic range extensions as new populations are established and reproduce. Enclosure experiments conducted during the summer of 1993 at the intertidal sandflats of Bodega Harbor showed that C. maenas significantly reduced densities of the most abundant taxa, including the bivalves Transennella confusa and T. tantilla, the cumacean Cumella vulgaris, and the amphipod Corophium sp. Furthermore, Carcinus maenas selectively removed larger (>3 mm) rather than smaller (<1 mm) Transennella spp. in both field and laboratory experiments. Based on the available data from this and other studies of green crabs, and our 10 yr study of community dynamics at Bodega Harbor, we predict C. maenas will significantly alter community structure, ecological interactions, and evolutionary processes in embayments of western North America.  相似文献   

8.
The North Atlantic portunid crab Carcinus maenas (Linnaeus, 1758) has invaded the North Pacific Ocean following more than two centuries of global dispersal due to human activities. C. maenas was first collected in San Francisco Bay, California, in 1989–1990, where its distribution and prey selectivity were investigated in 1992–1994. It has become abundant in shallow, warm lagoons (which as favorable and retentive microhabitats may have served as invasion incubators) and spread throughout the north, central and south bays. It may have arrived in ballast water, on fouled ships, amongst algae with imported live bait or lobsters, or by intentional release; genetic comparisons of the Bay population with possible source populations may aid in defining the transport mechanism. C. maenas' eurytopic nature, its high breeding potential, and its diet and feeding behavior suggest the potential for extensive ecosystem alterations through predator-prey interactions, competition, disturbance, and indirect effects. Although both negative economic impacts through reduction or disruption of fisheries and positive impacts of providing bait and human-food fisheries have been documented in a few regions, the potential economic impacts in San Francisco Bay remain largely unknown.  相似文献   

9.
C. Zeng  E. Naylor  P. Abello 《Marine Biology》1997,128(2):299-305
Batches of hundreds of freshly collected megalopae of the shore crab Carcinus maenas (L.) showed persistent circatidal rhythms of moulting to the juvenile crab stage when maintained in constant laboratory conditions. Peaks of moulting occurred around expected times of high tides, with few megalopae moulting at other times. In larvae collected offshore, the highest tidally-timed peak of metamorphosis occurred during the second to fifth expected times of high tide, and metamorphosis of 50% of each batch took about 22 h or longer. In contrast, in larvae collected at the water's edge, 70% metamorphosed during the first expected episode of high tide, within 6 to 8 h after collection. However, although inshore megalopae moulted before offshore ones, the tidal timing of moulting remained unaltered whether megalopae were collected at neaps or springs, from the water's edge or farther offshore, in the presence or absence of natural substratum, and under various light–dark and salinity regimes. Metamorphosis of C. maenas megalopae around the times of high tides may enhance settlement into the upper intertidal zone. Early juveniles of the crab apparently prefer that zone as they are most abundant there and, unlike adults, do not undertake up-and-down-shore migration with tides. The present finding demonstrates, for the first time, endogenous physiological timing of circatidal periodicity in the metamorphic moult of crab megalopae, suggesting that endogenous factors, as well as exogenous ones should be taken into account in considering the process of settlement by crab megalopae. Received: 21 February 1996 / Accepted: 27 November 1996  相似文献   

10.
Efficient detection of food patches in oceanic areas by pelagic predators is often linked to large-scale physical structures (e.g. fronts, upwellings) that are usually rich and predictable. At smaller scales, however, predictability of resource becomes less clear because of the lability of smaller physical structures such as slicks and drift lines. Here, we explore how light levels and quantity of flotsam affect the occurrence of foraging Yellow-bellied sea snakes (Pelamis platurus) on slicks. Although this pelagic species was formerly hypothesised to surface randomly and drift passively to reach slicks, our results show that foraging snakes are far more abundant on slicks if light levels are high and if slicks display flotsam. The combination of both light and flotsam should enhance the contrast between a potentially favourable slick and the adjacent waters as seen from an underwater viewpoint. Although our results do not unambiguously demonstrate the ability of Pelamis platurus to visually detect surface drift lines, they clearly suggest a role of both light levels and amount of flotsam on surfacing decision. Accordingly, this hypothesis is supported by several complementary traits that are specific to this species. ‘Float-and-wait’ foraging undoubtedly requires efficient detection of, and orientation to, oceanic slicks—processes that are likely less random and passive than formerly believed. Successful pelagic foraging is no doubt important to this species of sea snake that is the world’s most widely distributed snake species.  相似文献   

11.
Models can be used to direct the management of population spread for the control of invasives or to encourage species of conservation value. Analytical models are attractive because of their theoretical basis and limited data requirements, but there is concern that their simplicity may limit their practical utility. We address the applied use of simple models in a study of a declining annual herb, Rhinanthus minor. We parameterized a population-spread model using field data on demography and dispersal for four management systems: grazed only (GR), hay-cut once (H1), hay-cut twice (H2), and hay-cut with autumn grazing (HG). Within a replicated experiment we measured spread rates of introduced R. minor populations over eight years. The modeled and measured spread rates were very similar in terms of both patterns of management effects and absolute values, so that in both cases HG > H2, H1 > GR. The treatments affected both dispersal and demography (establishment and survival) and so we used decomposition approaches to analyze the major causes of differences in population spread. Increased dispersal under hay-cutting was more important than demographic changes and accounted for approximately 70% of the differences in spread rate between the hay-cut and grazed-only treatments. Furthermore, management effects on the tail of the dispersal curve were by far the most critical in governing spread. This study suggests that simple models can be used to inform practical conservation management, and we demonstrate straightforward uses of our model to predict the impacts of different management strategies. While simple models can give accurate projections, we emphasize that they must be parameterized with high-quality data gathered at the appropriate spatial scale.  相似文献   

12.
Assignment of individuals to populations based upon genetic data is an important ecological problem that requires many polymorphic markers, often more than are available using single locus techniques. To demonstrate the utility of amplified fragment length polymorphisms (AFLP) in studying larval dispersal and recruitment in coral populations, two sets of AFLP primers were used to genotype colonies of the coral Agaricia agaricites Linnaeus from three widely separated geographic locations: the Bahamas (23°28′N, 75°42′W) and Key Largo, Florida (24°55′N, 80°31′W—two sites separated by 12 km) in 1995, and the Flower Garden Banks (FGB) in the Gulf of Mexico (27°55′N,93°36′W) in 1997. In addition to adult samples from each site, recruits were collected from settling plates placed on the East FGB for 1 year (1997–1998). The AFLP technique yielded 45 polymorphic markers. An analysis of molecular variance (AMOVA) showed significant genetic differences among the four adult populations, even between the two Key Largo sites. The recruits were significantly different from all adult populations except those from the FGB. Discriminant function analysis and the program AFLPOP were used to assign individuals to populations. Using the adult AFLP-banding patterns to build the statistical models, both procedures correctly assigned the majority of adults to their respective populations in simulations and assigned all but one of the recruits to the Flower Garden population from where they were collected . The AFLP technique provides a simple and adaptable population assignment method for studying recruitment processes in A. agaricites and other coral species. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
Discrete estuary subpopulations of the mud crab Hemigrapsus oregonensis (Dana, 1851) are connected via larval dispersal. Sequence variation at the mtDNA COI locus was examined in eight populations sampled in 2001–2002 from central California through northern Oregon in the northeast Pacific (36.6–45.8°N) to infer patterns of dispersal and historical connectivity in the region. Strong evidence for persistence since the mid-Pleistocene, with no range truncation resulting from southward shifting temperature isoclines, was provided by a phylogeographic pattern of haplotypes of an older clade distributed throughout the sampled range. A recently derived clade became widespread only north of Cape Blanco after the last glacial maximum. Its clear pattern of restriction to the northern area, in the absence of similarly restricted southern clades, suggests that contemporary dispersal around Cape Blanco is rare (population F ST = 0.192). Low pairwise differentiation within Oregon and within central California, as well as contrasts between northern and southern groups in the shape of the pairwise mismatch distribution, nucleotide diversity, and Tajima’s D suggest that these regions reflect different demographic histories. Potential mechanisms explaining this latitudinal break include contemporary coastal circulation patterns, selection, and ancient patterns of larval dispersal in the California Current.  相似文献   

14.
L. J. McCook 《Marine Biology》1997,129(4):713-722
A combination of small-scale transplants and herbivore exclusion was used to test the importance of herbivory, physiological tolerance limits, and recruitment and dispersal in regulating the distribution and abundance of the genus Sargassum on two nearshore fringing reefs of the central Great Barrier Reef, during 1992/1993. Sargassum (predominantly S. oligocystum and S. tenerrimum) were transplanted from reef-flat zones where they normally grow, to a seaward coral zone where they are not normally found. At Great Palm Island, coral-zone transplants only survived if protected from herbivores. At Brook Island, survival of uncaged coral-zone transplants was more variable but not significantly lower than plants returned to the Sargassum zone. Thus herbivory may be a major cause of the zonation patterns of adult Sargassum on these fringing reefs, but the importance of this factor varies between and within reefs. Since protected Sargassum survived and grew for up to 6 mo in the coral zone, the adult algae are not physiologically limited by any physical or chemical differences between zones. However, Sargassum recruitment to the coral zone was very low (mean 2.7 recruits m−2 over 13 mo), and was not significantly affected by herbivores. Since rates of herbivory were relatively slow, effective exclusion of Sargassum from the coral zone by herbivores may depend on low recruitment of the algae. In a broader context, the distribution of Sargassum may depend on the combined spatial patterns of herbivory and recruitment. Received: 24 January 1997 / Accepted: 12 May 1997  相似文献   

15.
The mechanisms driving genetic structure in marine systems are elusive due to the difficulty of identifying temporal and spatial barriers to dispersal. By studying marine invertebrate species with limited dispersal potential, genetic structure can be directly related to physical and biological factors restricting connectivity. In the northwest Atlantic, the benthic brood-rearing amphipod Corophium volutator is distributed across basins with distinct circulation patterns and has the potential to disperse passively during its adult stage. We analyzed spatial genetic variation and migration rates across C. volutator’s North American range with sequence data for mitochondrial DNA and three novel nuclear markers using frequency and coalescent-based methods. We found low genetic differentiation within basins, but strong subdivision within the Bay of Fundy and a striking biogeographic break between the Bay of Fundy and Gulf of Maine, suggesting that genetic drift may act on populations in which connectivity is restricted due to the limitation of passive dispersal by hydrological patterns.  相似文献   

16.
Phenotype-environment matching in the shore crab (Carcinus maenas)   总被引:1,自引:0,他引:1  
The shore crab (Carcinus maenas) exhibits a range of carapace pattern polymorphisms, but little is known regarding their function or maintenance. If patterns represent some form of crypsis, then associations between carapace colouration and substrate are expected; to determine whether such relationships exist, frequency of crab morphs and quantity of substrate type were measured from fifteen 10×40 m2 quadrats at each of three sites along the southern shore of the Firth of Forth, Scotland. Five thousand one hundred and thirty-seven crabs and 3.6 km of line intercept transect data were collected during a 9-week period. Crab abundance, relative frequency of morphs and substrate type varied significantly among the three sites. Plain crabs were strongly associated with macro-algal substrates whereas patterned crabs were associated with mussel beds. This pronounced phenotype-environment matching, as well as various characteristics of the carapace patterns themselves, suggests that patterned crabs are cryptic on polychromatic backgrounds. The frequency of patterned crabs and the percentage of white pigment on the carapace both declined significantly with carapace width. The loss of pattern coincides with an ontogenetic shift in habitat use and we present evidence to suggest that individual crabs lose their pigment, rather than larger patterned crabs being preferentially removed from the population by predators. Throughout their life history, shore crabs encounter high variation in predation, food supply, and physical habitat; to survive they have evolved a strategy that includes elements of pattern polymorphism, crypsis, ontogenetic shifts, and plastic responses.  相似文献   

17.
Marine invertebrates with high larval dispersal capacity typically exhibit low degrees of population differentiation, which reflects both contemporary and historical processes. We sampled 346 individuals from seven populations of the lined shore crab, Pachygrapsus crassipes Randall, along the northeastern Pacific Coast and Korea during summer 2003. DNA sequence analysis of 613 bp of the mitochondrial COI gene showed that overall gene diversity (h) was high (0.92±0.01), whereas overall nucleotide diversity (π) was low (0.009±0.005). A total of 154 mtDNA haplotypes were identified; however, 114 were present in only one individual. Analysis of molecular variance revealed significant genetic structuring at Point Conception, CA, USA, that is likely due to the oceanographic circulation patterns, which result in asymmetrical migration of haplotypes. However, genetic variation among eastern Pacific populations was generally low, probably because of high contemporary gene flow and recent common ancestry of haplotypes. Mismatch analysis and nested clade analysis suggested that the population history of this region is characterized by two contiguous northwards range expansions, which are congruent with Late Pleistocene glacial cycles. Highly significant genetic differentiation was detected between eastern Pacific populations and Korea, indicating transpacific gene flow is restricted. Time of divergence between the two transpacific lineages was estimated between 0.8 and 1.2 Myrs ago. The small, recently founded population of P. crassipes at Bamfield, BC, Canada, did not appear to have undergone a founder effect.  相似文献   

18.
Pelagic larvae are highly important for maintaining the gene flow among populations of sessile marine invertebrates. Colonial ascidians consist, exclusively, of brooding species, with lecithotrophic larvae that have a limited dispersal. As a result, there is a marked differentiation among populations. In this work, we used allozyme electrophoresis to access the genetic variation in four populations of Symplegma rubra, a colonial ascidian frequently found in the intertidal zone of Southeastern Brazilian coast. High variability was found at three of the four sites sampled, the exception being Praia Grande in the State of Rio de Janeiro. At this site, there was a great preponderance of clones, which possibly reflected the enclosed nature of the location and its low water circulation that reduce the dispersal capabilities of these animals. S. rubra did not conform to expectations for random mating (Hardy–Weinberg equilibrium): there was a deficit of heterozygotes that was more related to the small population size than to inbreeding processes, since F is analysis per locus revealed a deficiency of heterozygotes at only one locus—MDH*. The greatest variation in allele frequency was found for GPI-2*. Analyses of genetic variability revealed moderate differentiation among the populations (F ST=0.051), which was unexpected for a species with a low dispersal capability. Rafting, a frequently underestimated means of dispersal, may be the main mode of gene flow in this species over large areas, since colonies of S. rubra are frequently seen growing on drift material and there is no evidence that the larva survive for a long time in the plankton.  相似文献   

19.
The euphausiid Euphausia crystallorophias Holt and Tattersall, 1906 is considered to be a neritic species. It has been found in greatest abundance along the Antarctic continental margins, often in association with regions of pack ice. Although E. crystallorophias has been observed at some islands to the west of the Antarctic Peninsula, the species has not previously been reported from islands of the maritime- or sub-Antarctic further north. During an oceanographic transect in November 1997 from South Georgia to the South Sandwich Islands, acoustic observations revealed a dense, discrete pelagic target at 50 m. The target was fished and was found to be an aggregation of small E. crystallorophias. The fishing location (54.48°S; 30.61°W) was >1500 km from the Antarctic continent, and >250 km from the nearest land, in water of several thousands of metres depth – clearly a non-neritic environment. Examination of hydrographic data revealed that the E. crystallorophias swarm had been located within a fast-flowing band of water that had characteristics of water found near the Antarctic Peninsula. This band was ≃150 km wide, and had a speed ranging from 9 to 22 km d−1 in a north-easterly direction. The possible origins of this E. crystallorophias swarm are explored in the light of the eddy-dominated current patterns prevalent in the Weddell–Scotia Confluence region, and with reference to published growth-rate estimates for the species. We discuss the potential for long-distance dispersal of E. crystallorophias and other neritic species in fast current jets, and examine how such oceanographic features could facilitate long-distance dispersal, colonization, and gene flow. Received: 23 November 1998 / Accepted: 25 March 1999  相似文献   

20.
The study of correlations between different behaviours in a population—referred to as behavioural syndromes—has begun to flourish during recent years. However, the evolutionary mechanisms that cause behavioural traits to vary non-independently from each other are still poorly understood. Here, we bring behavioural syndromes into a new perspective, in which the phenomenon is regarded at the individual level and on a continuous scale instead of as a population-level presence/absence trait. As the correlation between behaviours is never perfect (i.e. r < 1), individuals are likely to vary in how consistently they behave. Therefore, we can predict that if behavioural syndromes at the population level are results of natural selection, the consistency in a suite of behaviours—and not the behavioural configuration per se—should be heritable and involve fitness advantages at the individual level. We define a variable that describes the individual deviation from the hypothetical perfect correlation predicted by the syndrome. The use of such a variable depicting the consistency of behaviours of individuals allows us to make solid evolutionary inferences about correlated behaviours from patterns of individual instead of population variation. We suggest that, by adopting the concept of syndrome deviation, understanding the evolution of behavioural syndromes and, in particular, testing competing evolutionary hypotheses about the origin of behavioural syndromes becomes possible in a more rigorous manner than before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号