首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
基于MOD16产品的三江平原蒸散量时空分布特征分析   总被引:2,自引:0,他引:2  
借助Arc GIS 10.2和ENVI 4.5/ID软件平台,利用MOD16遥感数据集,统计分析了三江平原2000─2014年地表蒸散量的年际和年内时空变化状况,探讨了不同地表类型下蒸散量的差异性变化特征。首先将原始的MOD16产品进行投影转换、数据拼接和重采样等操作,在此基础上计算三江平原地区蒸散多年年均值和月均值,并分析了三江平原蒸散的变化趋势。利用三江平原的矢量边界和土地利用分类数据统计了不同时间尺度序列下各种土地利用类型的蒸散平均值,进而分析不同地物类型下蒸散量的年纪变化和季节变化特征。研究表明,(1)三江平原年蒸散量总体上呈缓慢上升趋势,波动范围为447~521mm·a~(-1),年平均值为497 mm·a~(-1)。(2)年内蒸散量呈单峰型分布,季节性变化特征明显,蒸散主要集中在5─9月份,最高、最低值分别出现在8月和1月。(3)多年平均蒸散空间格局呈现北低南高的分布规律,高植被覆盖区蒸散量较大。2000─2014年蒸散变化趋势不明显的面积占88%,蒸散显著、极显著增加(8.74%)的像元主要分布在集贤市区域和双鸭山山区,蒸散显著、极显著减少的像元主要分布在河道以及城市群附近。(4)土地利用特点影响着三江平原蒸散量的分布状况,蒸散强度大小按类型排序依次为森林(46.6 mm)草地(34.7 mm)农田(38.38 mm)荒漠(27.11 mm)。研究结果对于加强三江平原水资源管理与水分高效利用具有重要意义。  相似文献   

2.
精河流域是新疆天山北坡经济带的重要组成部分。利用近60 a气象数据及Landsat 5 TM影像数据,采用Penman-Monteith公式和SEBAL模型、morlet小波分析和M-K突变检验,研究了精河流域实际蒸散量时空格局、变化特征及周期性。结果表明:(1)全流域实际蒸散量的时空分布变化受到气象要素及地表下垫面的影响,近60 a蒸散量整体呈显著波动减小趋势,实际蒸散量变化速率在季节上表现为夏季春季秋季冬季。(2)实际蒸散量于1982年突变后年平均蒸散量减少150.654 mm(17.361%),且蒸散量变化存在以29 a为主的3个振荡周期,未来15 a蒸散量将呈先小幅上升后下降的趋势。(3)蒸散量的空间分布变化与地表土地利用类型具有显著相关关系,相关性表现为水域耕地林地草地未利用地。  相似文献   

3.
基于黄土高原1961—2008年月平均气温、最高气温、最低气温、相对湿度、降水量、风速和日照百分率等气候要素资料,应用修订的Penman-Monteith(P-M)模型计算了最大可能蒸散量,分析其时空分布、异常分布特征和次区域时间演变特征。结果表明:1961—2008年间,黄土高原最大可能蒸散量多年平均在400~800 mm之间,大部分区域650~750 mm之间。一致性异常分布是黄土高原最大可能蒸散量的最主要空间模态。黄土高原最大可能蒸散量的异常空间分布可分为以下3个关键区:高原西北部区、高原东北部区和高原东南部区。高原西北部区域最大可能蒸散量呈显著增加趋势,且发生了突变现象;高原东北部区域最大可能蒸散量呈显著下降的趋势,也发生了突变;而高原东南部区域下降趋势不显著,未发生突变。黄土高原最大可能蒸散量的3个空间分区中,3 a的周期振荡表现得比较显著。  相似文献   

4.
基于黄土高原1961—2008年月平均气温、最高气温、最低气温、相对湿度、降水量、风速和日照百分率等气候要素资料,应用修订的Penman-Monteith(P-M)模型计算了最大可能蒸散量,分析其时空分布、异常分布特征和次区域时间演变特征。结果表明:1961—2008年间,黄土高原最大可能蒸散量多年平均在400~800 mm之间,大部分区域650~750 mm之间。一致性异常分布是黄土高原最大可能蒸散量的最主要空间模态。黄土高原最大可能蒸散量的异常空间分布可分为以下3个关键区:高原西北部区、高原东北部区和高原东南部区。高原西北部区域最大可能蒸散量呈显著增加趋势,且发生了突变现象;高原东北部区域最大可能蒸散量呈显著下降的趋势,也发生了突变;而高原东南部区域下降趋势不显著,未发生突变。黄土高原最大可能蒸散量的3个空间分区中,3 a的周期振荡表现得比较显著。  相似文献   

5.
蒸散量是热量平衡和水量平衡的重要分量.利用TM遥感影像和地表热量平衡模型估算静宁县水土保持世行贷款项目区的蒸散量,并结合地面实测资料进行检验,分析蒸散的分布规律,研究蒸散量与土地利用、地表参数、地形参数的关系.结果表明:研究区日蒸散量介于0.70~9.05 mm之间,平均5.31 mm,分布上呈现由西北向东南递增的趋势;不同下垫面的蒸散能力有一定差别,其中水域和林地的日蒸散量最大;日蒸散量与归一化植被指数(INDV)呈线性正相关,而与地表温度呈线性负相关.  相似文献   

6.
安徽省近40年参考作物蒸散量的敏感性分析   总被引:3,自引:0,他引:3  
利用安徽省79个站点1971—2010年逐日气象资料,采用FAO Penman-Monteith公式计算了近40年安徽省参考作物蒸散量(ET0)以及ET0对日照时数、相对湿度、风速、温度等气象因子的敏感系数,并对ET0的时空分布和4个气象因子敏感系数的时空变化特征进行了分析。结果表明:近40年来安徽省年平均参考作物蒸散量为862 mm,自1971年以来,年平均参考作物蒸散量总体上呈现波动下降趋势;空间分布上,基本呈自北向南、自低向高递减趋势;ET0与平均温度、日照时数、相对湿度和风速的敏感性方面,ET0对相对湿度的变化最为敏感,其次是日照时数、风速,对平均温度的敏感性最低。从近40年各气象因子敏感系数的多年变化特征来看,平均温度、日照时数和风速的敏感系数以平稳波动为主,年际间变化不是很明显,而相对湿度敏感系数则呈现明显的上升趋势(通过0.01的显著性检验),其绝对值有明显的减小趋势,表明相对湿度对参考作物蒸散的敏感性在减弱。在年内变化特征方面,总体来说,相对湿度敏感系数年内变化表现为明显的双峰型变化特征,而平均温度、日照时数和风速年内变化特征为单峰型。在这4个气象要素对ET0的贡献率方面,贡献率最大的是相对湿度,四个影响ET0的气象要素对ET0变化的总贡献为-1.33%。综合敏感性和贡献率两方面因素分析,日照时数和风速的变化趋势在很大程度上解释了ET0呈下降趋势的原因。  相似文献   

7.
近53年山东省霾季节性特征的年代际变异   总被引:1,自引:0,他引:1  
为了进一步认识山东省霾日长期变化特征,从而为政府决策和空气质量预报提供科学依据,基于山东省80 个气象站53 年(1961-2013)的观测资料分析,利用多项式及线性回归拟合、定义表示随季节和年际变化程度的变量如季节变化率、年际变化率等多种统计方法分析了近53 年来山东省霾日季节性的年际、年代际长期变化及空间分布规律,结果表明,山东上个世纪明显的冬季霾高发的典型季节性特征演变为本世纪模糊的季节差异,即霾多发时段随年际增长逐渐由冬季蔓延至秋季,夏季和春季.全省平均霾日的季节变率从60 年代的84.0%,70-80 年代的72.4%~73.6%,到90 年代跌至56.4%,而在本世纪的13 年低达42.3%,体现了山东霾日变化季节性的年代际特征,即近53 年季节差异在不断减小,霾趋于常年化发生的大气污染事件.霾日季节性的空间分布及年际变化特征还表明:近53 年山东霾日呈持续上升趋势,1990 年之前呈显著的增长趋势,1990 年之后上升缓慢,但维持霾高发的水平.霾日高发区域主要集中在济南地区,济宁-泰安-莱芜一带,枣庄-临沂一带,青岛地区和聊城西部地区,其中,高中心依次为济南的80.9 d·a^-1,临沂的78.2 d·a^-1 和青岛的69.0 d·a^-1.山东中东部的霾日年增长率整体高于西部地区,鲁中、鲁南及半岛南部地区是霾日年际增长高值区.山东省霾日年际变化趋势以夏季增长率最高,大部分地区的年际增长率都在4.5%·a^-1 以上,其次是秋季、春季霾日年际变化趋势,冬季霾日年际变化趋势普遍增长率最低,且大部分地区的变化率值为1.5%·a^-1 以上,近53 年来山东大部分地区出现了霾日模糊季节性变异.  相似文献   

8.
基于1995—2015年乌鲁木齐土地利用遥感解译数据,运用CA-Markov模型模拟预测2025年土地利用变化并进行生态系统服务价值(ESV)评估,应用格网分析、空间自相关、Getis-Ord热点区分析等空间统计方法,进一步分析生态系统服务价值与土地利用空间格局的分布特征,讨论两者空间自相关关系及年际变化的冷热点空间分布变化原因。结果表明,近30 a研究区各土地利用类型的生态系统服务价值呈波动变化态势,但总体上表现为减少趋势,主要原因在于耕地、林草地提供的生态系统服务价值减少。生态系统服务价值空间分布格局差异明显,高值区域多年来主要分布在乌鲁木齐县林地面积较多的地区,低值区域集中分布于乌鲁木齐中心四区(天山区、沙依巴克区、水磨沟区、头屯河区)的周边区域。研究区生态系统服务价值具有显著的空间正自相关性与空间聚集特征,高-高、低-低聚集分布分别与生态系统服务价值高值、低值区域高度重合。生态系统服务价值热冷点区呈逐年增加趋势,热点区增加与近年来乌鲁木齐大力推行生态保护及修复等措施有极大关联,冷点区增加与城市建成区无序扩张及土地开发等一系列人类活动有密切关系。  相似文献   

9.
蒸散(ET)在地表水平衡和水文循环过程中起着至关重要的作用。采用2000—2019年第6版MODIS遥感产品数据中的蒸散产品数据(MOD16 ET和PET)、土地覆盖类型数据(MCD12Q1)以及安徽省77个气象站点常规气象观测数据,结合水分亏缺指数(CWSI)、变异系数、Theil-Sen’s趋势估算方法以及Mann-Kendall(M-K)检验,探讨了安徽省近20年ET、PET和CWSI时空变化特征及其影响因素。结果表明,安徽省近20年ET总体呈现显著增加趋势(6.98 mm·a~(-1)),PET呈不显著增加趋势(3.24 mm·a~(-1)),而CWSI呈现显著下降趋势(-0.004 a~(-1))。空间上,ET介于285—1 282 mm,南部高、北部低,变化趋势介于-25.5—50.6 mm·a~(-1),总体呈较低和中等波动性变化特征;PET介于1 118—1 673 mm,西部高、东部低,变化趋势介于-34.4—23.5 mm·a~(-1),总体呈较低和低波动性变化特征;CWSI与ET分布特征相反,介于0.17—0.80,总体呈中等和较低波动性变化特征。各土地利用类型对应ET大小依次为:林地草地农田湿地水体裸地城镇,而各土地利用类型对应PET差异较小,且CWSI与ET排序总体相反。水分条件(即降水量和相对湿度的增加)是安徽省近20年ET增加和CWSI下降的主要原因,进而使得干旱化趋势有所缓解,而辐射条件可能是PET增加的主要原因。  相似文献   

10.
近年来长江流域气溶胶光学厚度时空变化特征分析   总被引:6,自引:0,他引:6  
利用2000年3月至2011年2月MODIS Level3遥感反演大气气溶胶光学厚度(AOD)产品数据,结合中国地形的3大阶梯分布,分析近年来长江流域气溶胶光学厚度的时空变化特征。结果表明,近12年来,长江流域的年平均AOD值在0.38,~,0.44之间变化,其中“第一阶梯”年平均AOD呈极显著下降趋势(P〈0.01),“第二阶梯”和“第三阶梯”则呈上升趋势,但趋势不显著(P〉0.05);4季平均AOD除春季呈下降趋势,其他3季均为上升趋势,其中冬季上升速率最快,线性倾向率为0.004·a-1(P〈0.05),春季AOD与其他季节的差距在逐步减小;长江流域3大阶梯AOD具有鲜明的季节变化特征,基本上是春夏季较大,秋冬季较小,具体表现为春季最大,从夏季到冬季逐渐减小,冬季到来年春季跳跃性增高,但由于地理位置、地形、气候、人类活动等因素的影响,不同区域又有所差异;AOD年平均值和四季平均值均表现为“第三阶梯”〉“第二阶梯”〉“第一阶梯”。长江流域年平均AOD变化空间差异显著,其中显著减少区域占整个流域面积的17.54%,主要分布在“第一阶梯”;显著增加的区域仅占流域总面积的5.23%,主要分布在“第二阶梯”和“第三阶梯”。另外,由于海拔、地形及山脉阻挡等诸多因素影响,导致在地形阶梯间高程突变线左右两边的狭窄区域,AOD分布存在低处明显大于高处的现象。这些结果有助于长江流域的区域气候变化和环境研究。  相似文献   

11.
利用广东省260个土壤剖面数据,开展区域尺度下的土壤砷(As)元素质量分数的空间分布和垂直变异研究。结果显示,研究区土壤砷的几何平均质量分数为10.4 mg.kg-1,高于全国的平均水平9.6 mg.kg-1。表层土壤As的上基线质量分数为23.4 mg.kg-1。土壤As的空间分布特征主要决定其成土母岩的类型,主要表现为A、B、C 3层土壤As的空间展布形式相似,高As背景质量分数主要分布于石灰岩和砂页岩地区。此外,由A层至C层,As质量分数呈逐渐增加的趋势(由低到高依次为10.4 mg.kg-1,10.7 mg.kg-1,11.3 mg.kg-1),但无底层富集特征,这种垂直变异特征与低有机质含量和强烈的土壤侵蚀作用有关。计算得出,研究区由土壤侵蚀引发的流入周边水体的土壤As每年可高达1 040 t。  相似文献   

12.
利用遥感驱动的生态过程模型-Boreal Ecosystem Productivity Simulator (BEPS)、2001-2006年国家森林资源连续清查数据(一类清查-样地尺度)和2003-2009年森林资源规划设计调查数据(二类调查-区域尺度),分别计算江西省吉安市的森林生态系统生长量,从不同空间尺度和森林类型对3种数据源估算的森林生长量进行了分析。结果表明,样点尺度上,BEPS模型模拟的森林生长量(4.18 Mg·hm^-2·a^-1)低于群落生长量(5.86 Mg·hm^-2·a^-1),与乔木层生长量(4.29 Mg·hm^-2·a^-1)基本一致,模型模拟结果与两者的拟合R2分别为0.48和0.43。区域尺度上,BEPS模型模拟、二类调查数据计算的群落及乔木层生长量分别为4.65、4.36和3.34 Mg·hm^-2·a^-1,BEPS模型估算的吉安市各县森林总生长量与二类调查数据计算的群落、乔木层生长总量拟合R2分别达0.84和0.83。一类清查数据计算结果高于二类清查数据计算结果,BEPS模型模拟森林生长量分别与基于一类清查数据计算的乔木层生长量及二类调查数据群落生长量较为一致。从研究区两种主要森林类型来看,常绿阔叶林年平均生长量高于常绿针叶林,常绿针叶林与模型估算结果差异小于常绿阔叶林。最后利用模型估算了研究区2001-2010年平均生长量,为认识研究区的森林生长空间分布差异及更新森林生物量提供支持。  相似文献   

13.
基于1959-2008年广东省境内25个雨量站的逐日降雨观测资料,在SQL SERVER2000中编写相关代码,对次降雨、月、雨季、年、10年、50年等6个不同时间尺度的降雨量、降雨次数、降雨类型进行统计分析。研究表明:广东省境内存在3个多雨带和3个少雨带,降雨量在空间上大致呈现东、西、北部少,中、南部多的格局,年均降雨天数内陆多于沿海,而降雨量沿海大于内陆。近50年广东省年均降雨量为1758.8 mm,降雨量由南向北呈带状递减,其降雨量最多、最少的区域分别为阳江、徐闻。年降雨天数的年际变化幅度小于降雨量的年际变化幅度。年降雨量变化不大,但降雨总天数呈现减少趋势,且减少的降雨类型以小雨、中雨为主,大雨、暴雨的降雨次数有增加的趋势,降雨量在时间分布上更为集中,旱涝灾害将会更为频繁。研究区80.0%以上的降雨量在雨季产生,其中沿海雨季降雨量占年降雨量的比重要大于内陆,且内陆(沿海)雨季降雨量一般集中在前汛期(后汛期)。在月尺度上,降雨量随月份变化呈现双峰型,两个峰值分别处于6月、8月。其中1-4月、6-8月、12月降雨量整体呈现增大趋势,5月、9-11月降雨量整体呈现减少趋势。在次降雨尺度,小雨、中雨、暴雨的平均次降雨强度有增大的趋势,而大雨、大暴雨降雨强度有微度减少的趋势。  相似文献   

14.
为了研究山东省参考作物蒸散量(ET0)的变化特征,选取属于湿润气候的成山头站以及属于半湿润气候的惠民站、济南站、潍坊站、定陶站、兖州站6个气象站,利用国家气象资料中心提供的1960—2011年的逐日气象资料,采用距平分析、回归分析和地理信息系统分析了山东省ET0的年代际、年际和年内的时空变化趋势,并通过偏相关分析及标准化偏回归系数对各站ET0的影响因素进行研究。结果表明:半湿润区ET0年代均值大于湿润区ET0年代均值,其中济南站最大,最大值出现在20世纪70年代,达到1269.2 mm,成山头站最小,最小值也出现在20世纪70年代,为900.8 mm;6个站点中,济南站ET0值年际间的变化最大,极差达到351.9mm,定陶的极差最小,为157.8 mm。潍坊的ET0年际波动最大,标准差达到74.4 mm;定陶的年际ET0标准差达到51.4 mm,波动最小。6个站点的ET0年均值随时间呈现不同程度的降低,其中潍坊和兖州为极显著,济南和定陶为显著降低。ET0年均值在空间上的分布规律为:济南站〉潍坊站〉惠民站〉兖州站〉定陶站〉成山头站;6个站点的ET0都是夏季最高,冬季最低。春季平均ET0值中部地区最大,达到409.0 mm,东北部沿海区最小,只有237.2 mm。夏季平均ET0值的空间分布与全年平均ET0值的空间分布较为一致,只在惠民站为中心的小区域内出现降低,与周围区域有反差。秋、冬季平均ET0值在中部及东北部均较大,东北部最大,西南部及西北部较小,最小值出现在西南地区。半湿润气候的惠民站、济南站、潍坊站、定陶站、兖州站的ET0随时间的年内变化曲线为单峰型,峰值均出现在夏季6月,全年的第162天。湿润气候下成山头站的ET0随时间的年内变化曲线呈双峰型,峰值分别出现在春季5月,全年第150天以及秋季9月,全年第270天;山东省ET0与气象要素间的相关性很好,除成山头站的最低气温外,均达到极显著水平。影响山东省湿润气候和半湿润气候ET0变化的主要气象要素分别为最高气温和平均气温。  相似文献   

15.
中国华南地区持续干期日数时空变化特征   总被引:1,自引:0,他引:1  
利用华南地区46个地面气象站1960-2012年逐日降水数据,分析该地区各季节持续干期日数的时空分布特征。结果表明:1)近53年来,华南地区春季和夏季的持续干期日数呈波动下降趋势,下降速率分别为0.042和0.108 d·(10 a)-1;秋季和冬季的持续干期日数呈波动上升趋势,上升速率分别为1.911和0.118 d·(10 a)-1。广东省春季和夏季持续干期日数呈下降趋势,下降速率分别为0.171和0.243 d·(10 a)-1;秋季和冬季持续干期日数呈增加趋势,增加速率分别为1.737和0.32 d·(10 a)-1。广西省春、夏和秋季持续干期日数呈增加趋势,增加速率分别为0.109、0.046和2.117 d·(10 a)-1;冬季为减小趋势,减少速率为0.106 d·(10 a)-1。2)华南地区持续干期日数在春季呈从北向南逐渐增多的趋势,夏季呈自西南向东北逐渐增加的趋势,秋季呈自西向东逐渐增加的趋势,冬季呈从北向南逐渐增多的趋势。冬季的持续干期日数是4个季节中最长的,大致在20~44 d。3)华南地区春季持续干期日数变化倾向率在-1.20~1.00 d·(10 a)-1之间,增加趋势最明显的区域是广西省的南部地区,减少趋势最明显的区域是广东省的沿海地区;夏季在-1.00~0.60 d·(10 a)-1之间,呈增加趋势的区域主要位于广西省的中部和南部,呈减少趋势的区域位于广东省大部分地区和广西省的东部;秋季在0~3.50 d·(10 a)-1之间,整体呈现增加趋势,变化倾向率较大的区域主要位于广西省的中部和广东省的东北部沿海地区;冬季在-1.50~2.00 d·(10 a)-1之间,呈增加趋势的区域主要集中在广东省的中南部和东部地区,以及广西的东部边缘,呈减少趋势的区域主要集中在广东省的北部以及广西的中部和西北部地区。持续干期日数增加趋势最明显的季节是秋季。4)持续干期日数与降水量表现出负相关性,与气温和无降水日数表现为正相关性。降水量和无降水日数的变化对持续干期日数的变化起着重要的作用,而温度对持续干期日数的影响比较小。  相似文献   

16.
50年长江源区域植被净初级生产力及其影响因素变化特征   总被引:1,自引:0,他引:1  
姚玉璧  杨金虎  王润元  陆登荣 《生态环境》2010,19(11):2521-2528
基于长江源区1959—2008年月平均气温、最高气温、最低气温、相对湿度、降水量、风速和日照时数等气候要素资料,应用修订的Thornthwaite Memorial模型计算了50年植被净初级生产力,分析其年际和年代际变化特征及其主要气象因子的影响。结果表明:1959—2008年间,研究区年降水量呈增加趋势,降水量变化曲线线性拟合倾向率每10年为5.685~13.047 mm,春夏季增幅较大;年平均气温呈极显著上升趋势,气温变化曲线线性拟合倾向率每10年在0.240~0.248℃之间,增温率以秋冬季最大;最大蒸散呈增加趋势,年最大蒸散变化曲线线性拟合倾向率每10年在5.073~5.366 mm,春季增幅最大;地表湿润指数也呈增加趋势,年地表湿润指数变化曲线线性拟合倾向率每10年为0.013~0.020,冬季增幅最大,在10年周期时间频率附近,出现了6~8个干湿交替期,20世纪90年代之后为偏湿期,在低频区,1998—2005年有偏干振荡;近50年年NPP变化呈显著上升趋势,NPP变化曲线线性拟合倾向率每10年在97.901~197.01 kg.hm-2之间,2001—2008年NPP较高。影响长江源区NPP变化的主要气候因子是降水量、最大蒸散量和平均最低气温。  相似文献   

17.
广东省植被类型丰富、气候条件复杂,开展气候因子对植被的影响研究,对于全省保护生态环境、应对气候变化具有重要意义。利用MODIS NDVI数据和地面气象观测数据,基于变化趋势分析、空间自相关分析、相关性分析等方法,研究广东省NDVI时空分布特征及其对气温、降水、日照时数等气候因子的响应。结果表明,2000—2018年广东省NDVI平均值为0.62,总体呈上升趋势,平均年增长值为0.005 3,正增长区面积占比达94.50%。全省73.72%的区域植被呈现显著空间集聚性,其中高值集聚区面积占比48.19%,低值集聚区面积占比25.53%。不同类型植被的NDVI均呈增加趋势,其中常绿阔叶林、常绿针叶林、混交林的NDVI平均值最大,而农田、矮树灌木、混交林平均年增长值最大。NDVI具有明显的季节变化规律,夏季NDVI值最大、年增长值最小,冬季NDVI值最小、年增长值最大。年内NDVI最低值出现在2月,最高值出现在9月。月平均NDVI与气温、降水、日照时数相关性显著,其最大相关系数分别为0.863 7、0.639 4、0.605 7。NDVI对日照时数的响应不存在滞后,对气温存在1个月的滞后,对降水存在1—2个月的滞后。日照时数对NDVI的影响仅持续1个月左右,温度、降水对NDVI的影响可持续4—5个月。  相似文献   

18.
山西省近50年日照时数时空变化特征研究   总被引:8,自引:0,他引:8  
根据山西省62个地面气象站50a(1959—2008)的月日照时数系列数据,对全省13照时数的时空变化特征进行了较系统分析。结果表明,(1)近50a山西省年平均日照时数呈显著减少趋势(-65.40h-(10a^-1),且最近26a减少更为明显。(2)春夏秋冬4季日照时数均呈减少趋势,其中夏秋冬3季日照时数显著减少,尤以夏季和冬季减少最为突出(分别为-28.06h·(10a)^-1和-23.45h·(10a)^-1);(3)除4月日照时数略有增加之外,其余11个月的日照时数均呈减少趋势,其中7个月(即1月、6月、7月、8月、9月、10月和12月)日照时数呈显著减少趋势,且以6月减少最为突出(-14.40h·(10a)^-1)。(4)在全省17个综合治理规划地区中,16个地区的日照时数呈显著减少趋势,主要以忻定盆地、太原盆地、临汾盆地和运城盆地(即第6、第7和第8地区)减少最为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号