首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
基于黄土高原1961—2008年月平均气温、最高气温、最低气温、相对湿度、降水量、风速和日照百分率等气候要素资料,应用修订的Penman-Monteith(P-M)模型计算了最大可能蒸散量,分析其时空分布、异常分布特征和次区域时间演变特征。结果表明:1961—2008年间,黄土高原最大可能蒸散量多年平均在400~800 mm之间,大部分区域650~750 mm之间。一致性异常分布是黄土高原最大可能蒸散量的最主要空间模态。黄土高原最大可能蒸散量的异常空间分布可分为以下3个关键区:高原西北部区、高原东北部区和高原东南部区。高原西北部区域最大可能蒸散量呈显著增加趋势,且发生了突变现象;高原东北部区域最大可能蒸散量呈显著下降的趋势,也发生了突变;而高原东南部区域下降趋势不显著,未发生突变。黄土高原最大可能蒸散量的3个空间分区中,3 a的周期振荡表现得比较显著。  相似文献   

2.
精河流域是新疆天山北坡经济带的重要组成部分。利用近60 a气象数据及Landsat 5 TM影像数据,采用Penman-Monteith公式和SEBAL模型、morlet小波分析和M-K突变检验,研究了精河流域实际蒸散量时空格局、变化特征及周期性。结果表明:(1)全流域实际蒸散量的时空分布变化受到气象要素及地表下垫面的影响,近60 a蒸散量整体呈显著波动减小趋势,实际蒸散量变化速率在季节上表现为夏季春季秋季冬季。(2)实际蒸散量于1982年突变后年平均蒸散量减少150.654 mm(17.361%),且蒸散量变化存在以29 a为主的3个振荡周期,未来15 a蒸散量将呈先小幅上升后下降的趋势。(3)蒸散量的空间分布变化与地表土地利用类型具有显著相关关系,相关性表现为水域耕地林地草地未利用地。  相似文献   

3.
基于MOD16产品的三江平原蒸散量时空分布特征分析   总被引:2,自引:0,他引:2  
借助Arc GIS 10.2和ENVI 4.5/ID软件平台,利用MOD16遥感数据集,统计分析了三江平原2000─2014年地表蒸散量的年际和年内时空变化状况,探讨了不同地表类型下蒸散量的差异性变化特征。首先将原始的MOD16产品进行投影转换、数据拼接和重采样等操作,在此基础上计算三江平原地区蒸散多年年均值和月均值,并分析了三江平原蒸散的变化趋势。利用三江平原的矢量边界和土地利用分类数据统计了不同时间尺度序列下各种土地利用类型的蒸散平均值,进而分析不同地物类型下蒸散量的年纪变化和季节变化特征。研究表明,(1)三江平原年蒸散量总体上呈缓慢上升趋势,波动范围为447~521mm·a~(-1),年平均值为497 mm·a~(-1)。(2)年内蒸散量呈单峰型分布,季节性变化特征明显,蒸散主要集中在5─9月份,最高、最低值分别出现在8月和1月。(3)多年平均蒸散空间格局呈现北低南高的分布规律,高植被覆盖区蒸散量较大。2000─2014年蒸散变化趋势不明显的面积占88%,蒸散显著、极显著增加(8.74%)的像元主要分布在集贤市区域和双鸭山山区,蒸散显著、极显著减少的像元主要分布在河道以及城市群附近。(4)土地利用特点影响着三江平原蒸散量的分布状况,蒸散强度大小按类型排序依次为森林(46.6 mm)草地(34.7 mm)农田(38.38 mm)荒漠(27.11 mm)。研究结果对于加强三江平原水资源管理与水分高效利用具有重要意义。  相似文献   

4.
蒸散量是热量平衡和水量平衡的重要分量.利用TM遥感影像和地表热量平衡模型估算静宁县水土保持世行贷款项目区的蒸散量,并结合地面实测资料进行检验,分析蒸散的分布规律,研究蒸散量与土地利用、地表参数、地形参数的关系.结果表明:研究区日蒸散量介于0.70~9.05 mm之间,平均5.31 mm,分布上呈现由西北向东南递增的趋势;不同下垫面的蒸散能力有一定差别,其中水域和林地的日蒸散量最大;日蒸散量与归一化植被指数(INDV)呈线性正相关,而与地表温度呈线性负相关.  相似文献   

5.
基于MOD16 遥感数据集,在ERDAS IMAGINE 2013 遥感图像处理系统的支持下,通过空间建模,计算蒸散多年年平均值和月平均值,并生成图像;结合陕西省矢量边界图、土地利用矢量图,统计不同时间尺度统计行政区域和不同土地利用类型的蒸散值.在ARCGIS 10 系统中,制作陕西省2000-2013 年年、月平均蒸散分布图.利用线性回归进行蒸散时间趋势分析,采用相关系数的统计检验方法进行显著性趋势检验.进而研究了陕西省2000-2013 年蒸散量的空间分布特征和时间变化规律,分析了不同类型下蒸散量的差异性变化特征.结果表明:(1)全省年蒸散量在波动中缓慢上升,波动范围为448.0~533.3 mm·a^-1,年平均值493.3 mm·a^-1.各月蒸散量的年际变化具有季节分异特征,秋末至仲春的月蒸散具有减少的趋势,春末至仲秋的蒸散具有增加的趋势.年内蒸散量呈单峰型分布,季节性变化特征明显,蒸散主要集中在5-9 月份,最高、最低值分别出现在8 月和11 月.(2)多年平均蒸散空间格局呈现北低南高的分布规律,高植被覆盖区蒸散量较大.蒸散变化趋势不明显的面积占77.2%,蒸散显著、极显著增加的像元主要分布在陕北地区、关中地区西部和陕南丘陵浅山区,蒸散显著和极显著减少的像元主要分布在关中城市群.(3)土地利用特点影响着陕西省蒸散量的分布状况,蒸散强度大小按类型排序依次为森林〉草地〉农田〉荒漠.研究结果对于陕西有限水资源的合理利用以及水资源短缺问题的解决、旱涝监测和预警等研究具有重要意义.  相似文献   

6.
若尔盖高原实际蒸散量变化规律研究   总被引:1,自引:0,他引:1  
蒸散发是若尔盖高原湿地重要的水文过程,但目前缺乏对若尔盖地区实际蒸散发量的相关研究结果。为计算若尔盖高原实际蒸散量,利用1967—2011年若尔盖高原地区红原、玛曲和若尔盖3个地面气象站的逐日气象资料,应用FAO56推荐的Penman-Monteith(P-M)公式,依据单作物系数法计算若尔盖地区实际蒸散量,利用累积距平、Mann-Kendall趋势检验、回归分析等方法分析其变化规律。结果表明,草地蒸散量是若尔盖高原实际蒸散量的主要构成部分,草地蒸散量达362.3mm·a-1,占74.28%。湿地蒸散量为116.6 mm·a-1,占23.85%;近45年来若尔盖高原3个气象站的ET_c显著相关,ET_c平均值为488.6 mm·a~(-1)。ET_c的变化并不明显,呈缓慢增加趋势,绝对变率为12.75 mm,相对变率为2.62%。若尔盖高原ET_c变化与植被生长周期密切相关,高强度蒸散过程集中在短暂的夏季,7月份平均值达3.73 mm·d~(-1)。4、10月份气温低于0℃,ET_c为1.5~2.0 mm·d~(-1);通过回归分析得出ET_c与气象因子间的关系式,相关系数r0.9,P0.05,相对误差均低于0.6%;年ET_c与年均气温相关性达到0.01的显著性水平,年ET_c与年降水量、相对湿度呈负相关性;1968—1971年ET_c增加36.09 mm,相对降水量增加5.82%;1971—1981、1981—2005年ET_c分别减少12.22 mm和16.34 mm;2005—2011年ET_c增加41.75 mm,相对降水量增加6.41%。该地区水文过程中蒸散发相对于水分补给变化较小。  相似文献   

7.
50年长江源区域植被净初级生产力及其影响因素变化特征   总被引:1,自引:0,他引:1  
姚玉璧  杨金虎  王润元  陆登荣 《生态环境》2010,19(11):2521-2528
基于长江源区1959—2008年月平均气温、最高气温、最低气温、相对湿度、降水量、风速和日照时数等气候要素资料,应用修订的Thornthwaite Memorial模型计算了50年植被净初级生产力,分析其年际和年代际变化特征及其主要气象因子的影响。结果表明:1959—2008年间,研究区年降水量呈增加趋势,降水量变化曲线线性拟合倾向率每10年为5.685~13.047 mm,春夏季增幅较大;年平均气温呈极显著上升趋势,气温变化曲线线性拟合倾向率每10年在0.240~0.248℃之间,增温率以秋冬季最大;最大蒸散呈增加趋势,年最大蒸散变化曲线线性拟合倾向率每10年在5.073~5.366 mm,春季增幅最大;地表湿润指数也呈增加趋势,年地表湿润指数变化曲线线性拟合倾向率每10年为0.013~0.020,冬季增幅最大,在10年周期时间频率附近,出现了6~8个干湿交替期,20世纪90年代之后为偏湿期,在低频区,1998—2005年有偏干振荡;近50年年NPP变化呈显著上升趋势,NPP变化曲线线性拟合倾向率每10年在97.901~197.01 kg.hm-2之间,2001—2008年NPP较高。影响长江源区NPP变化的主要气候因子是降水量、最大蒸散量和平均最低气温。  相似文献   

8.
云贵高原地形地貌复杂,探讨其气溶胶区域分布的时空差异性,对不同区域科学制定生态文明建设政策具有重要意义。利用2001年以来的MODIS 3 km分辨率气溶胶光学厚度数据,综合运用空间插值、趋势分析等方法探讨了云贵高原2001-2016年气溶胶光学厚度的区域分布和气候特征。结果表明,较高分辨率的3 km气溶胶数据显示出高原气溶胶的不同梯度空间分布和时间变化特征。以乌蒙山脉为界,高原多年平均AOD空间分布呈东高西低的分布特征,其中东部年平均AOD约为0.32,西部约为0.13。年平均AOD高值区(0.6)位于贵州省与四川盆地相邻的北部(包括遵义市、铜仁市)、与广西毗邻的东南部,以及省会城市贵州贵阳和云南昆明;高值区分布主要受人类活动、区域传输和地形所影响。季节平均表明,云贵高原东西部AOD高值的出现季节不完全同步,高原东部春季和冬季最高,高原西部春季最高,冬季最低。从相邻的两个强弱季风年来看,其与常年距平的反相位分布可能反映季风强度对气溶胶年际变化的影响。变化趋势上,高原年平均AOD呈现下降趋势,下降趋势率为-0.021/10a,但其中2001-2011年期间为波动上升,2011-2016年呈现显著下降,下降趋势率为-0.33/10a。高原东西部年AOD下降的速率有较大区别,高原东部的下降幅度明显大于西部,下降趋势率分别为-0.059/10a和-0.003/10a。  相似文献   

9.
西藏地区近40年温度和降水量变化的时空格局分析   总被引:1,自引:0,他引:1  
全球气候变化将对农田、林地、草原等生态系统产生不同程度的影响,而制定科学合理的气候变化应对策略,需要准确把握区域气候变化的时空特征与规律。为了全面了解西藏地区温度和降水指标的时空格局,深入分析了1971—2010年间的年平均温度和降水量年值及季节值的变化趋势和时空格局。结果表明,(1)年平均温度普遍升高,有39.72%的地区累计升高1.6~2.4℃,10.72%的地区累计升高2.4~3.2℃,局部地区累计升高4℃以上,在空间分布上,仅错那县、墨脱县和察隅县三县的南部地区年平均温度下降,其余地区年平均温度升高。从降水量变化来看,有42.09%的区域变化在±1 mm?a-1之间,与40年前相比,有12.41%的地区年降水减少40 mm以上,45.49%的地区呈增加趋势。从空间分布来看,降水量减少区域主要分布在阿里东北到那曲西北一带、日喀则西部到阿里狮泉河一带、日喀则南部以及林芝东南部。(2)从季节平均温度、降水量的变化来看,4个季节温度均以升高为主,增幅高低顺序为秋季春季冬季夏季;四季降水量差异较大,春季和夏季以增多为主,秋季和冬季以减少为主,其中,冬季减少最多,面积占比达96.78%。(3)近40年来,温度变化存在显著的突变点,突变时间存在空间分异性。(4)温度的明显升高和降水量的时空差异将导致局部地区气候干湿变化。藏西地区易发生全年干旱,藏南和藏东南地区易发生季节干旱,这将给农业生产、天然草地牧草生长和草原畜牧业带来不利影响。研究认为相关部门和农牧民都应该重视并尽快制定科学合理的应对策略和方案,以应对不确定性的气候变化。  相似文献   

10.
殷红  郭瑞  殷萍萍  胡涛  郭范顺 《生态环境》2010,19(2):394-397
选择辽河中下游流域为研究对象,通过调查流域内各月及多年年降水量、蒸散量及水分收支基本情况,应用区域蒸散互补关系模型估算辽河流域实际蒸散量,实现各年实际降水量、蒸散量的空间化。从多个层次分析1956—2000、1970—2000年及1980—2000年3个时间序列降水、蒸散量和水分收支的变化趋势及特点。结果表明:20a系列年平均降水量与45a系列比较分析发现,降水量减少的区域占流域面积的23.08%,降水量增加区域占流域面积的76.92%;辽河中下游流域实际蒸散大部分在600~850mm之间,其分布主要呈现由北向南、由西向东逐渐降低的趋势。辽河中下游流域水分收支不平衡,营口—辽阳—铁岭一线地区水分收支相当,此线以西北地区水分收支是负值,占总流域面积的59.73%,这种变化将会使西部干旱地区的旱情进一步增大。此线以东南地区水分收支是正值,占总流域面积的40.37%,当地的湿润程度会进一步增加。  相似文献   

11.
姚玉璧  杨金虎  岳平  陆登荣 《生态环境》2011,20(11):1585-1593
基于三江源区1959—2008年月平均气温、最高气温、最低气温、相对湿度、降水量、风速和日照百分率等气候要素资料,应用修订的Penman-Monteith(P-M)模型计算了最大潜在蒸散量和地表湿润指数,分析其空间分布、年际和年代际变化特征及其主要气象因子的影响。结果表明:1959—2008年间,研究区年降水量呈增加趋势,降水量变化曲线线性拟合倾向率为5.316~13.047 mm.(10a)-1,春夏季增幅较大;最大潜在蒸散量呈增加趋势,年最大潜在蒸散量变化曲线线性拟合倾向率在5.073~10.712 mm.(10a)-1,夏季增幅最大;地表湿润指数变化也呈增加趋势,年地表湿润指数变化曲线线性拟合倾向率0.011~0.026(10a)-1,冬季增幅最大,在15年周期附近,出现了3~5个干湿交替期,1984年之后为偏湿期,在中高频区,1998—2006年有偏干振荡;影响三江源区地表湿润指数的主要因子是降水量、相对湿度和平均最高气温。  相似文献   

12.
根据系统实测资料,利用根层土壤水的变化量,按水量平衡公式反算求得观测年、季及旱月的土壤蒸散量.以三年平均及旱年土壤吸入水量减去蒸散量的结果显示,两个观测试区0~100cm土层蒸散量大于吸入水量;若以月平均计,则每月蒸散量大于土壤吸入水量3.84~8.60mm,土壤水的吸入略小于消耗,一年内土壤水量接近平衡.  相似文献   

13.
农田蒸散量是作物蒸腾量和土壤蒸发量的总和,准确估算农田蒸散量对制定合理的灌溉计划至关重要,进而对农作物的增产保收具有重要的意义。研究作物系数及蒸散量估算模型已成为一个热点科学问题。淮河流域是中国主要的农业生产基地,而夏玉米是淮河流域最主要的粮食作物之一。为研究夏玉米全生育期蒸散估算模型,反映夏玉米逐日作物系数及蒸散量的变化,为当地的农业生产活动提供指导,采用五道沟水文实验站称重式蒸渗仪及气象要素实测数据,应用遗传算法,构建夏玉米全生育期单作物系数蒸散模型,得到其4个生长阶段的作物系数估算值。其中,参考作物蒸散量采用FAO PenmanMonteith公式计算;对估算误差较大的发育期,利用叶面积指数和发育期天数构建调整模型,对发育期作物系数进行数值修正,取得了较好的效果,并进一步估算蒸散量,最终得到遗传算法与多项式回归相结合的夏玉米蒸散估算模型。结果表明:全生育期内,修正后作物系数计算值与实际值的平均绝对误差为0.09,均方根误差为0.12,准确率(绝对误差<0.3)为96.2%;蒸散量计算值与实际值的平均绝对误差为0.89 mm·d-1,均方根误差为1.28 mm·d-1,准确率(绝对误差<4 mm·d-1)为100%;相比FAO推荐的作物系数模型,修正遗传算法模型作物系数和蒸散量的拟合准确率均明显提高,达到精度要求,该文修正遗传算法模型可用于夏玉米的蒸散估算。  相似文献   

14.
Abstract:  Important questions in conservation biology and ecology include whether species diversities of different groups of organisms are correlated and, in particular, whether plant diversity influences animal diversity. I used correlation and partial regression analyses to examine the relationships between species richness of vascular plants and four major groups of terrestrial vertebrates (mammals, amphibians, reptiles, and birds) in 28 provinces in China. Species richness data were obtained from the literature. Environmental variables included normalized difference vegetation index, mean January temperature, mean annual temperature, annual precipitation, May through August precipitation, actual evapotranspiration, potential evapotranspiration, and elevation range. Species richness was strongly and positively correlated among the five groups of organisms. Plant richness was correlated with animal richness more strongly than the richness of different animal groups correlated with each other except for reptile richness, which had a slightly higher correlation with amphibian richness than with plant richness. Plant richness uniquely explained 41 times more variance in the species richness of the four vertebrate groups combined than environmental variables uniquely did, suggesting that plant richness influences terrestrial vertebrate richness at the regional scale examined. Because of strong correlations between the diversity of vascular plants and vertebrates, the diversity of vascular plants may be used as a surrogate for the diversity of terrestrial animals in China. My results have implications for selection of areas to be protected at both regional and local scales.  相似文献   

15.
为了研究山东省参考作物蒸散量(ET0)的变化特征,选取属于湿润气候的成山头站以及属于半湿润气候的惠民站、济南站、潍坊站、定陶站、兖州站6个气象站,利用国家气象资料中心提供的1960—2011年的逐日气象资料,采用距平分析、回归分析和地理信息系统分析了山东省ET0的年代际、年际和年内的时空变化趋势,并通过偏相关分析及标准化偏回归系数对各站ET0的影响因素进行研究。结果表明:半湿润区ET0年代均值大于湿润区ET0年代均值,其中济南站最大,最大值出现在20世纪70年代,达到1269.2 mm,成山头站最小,最小值也出现在20世纪70年代,为900.8 mm;6个站点中,济南站ET0值年际间的变化最大,极差达到351.9mm,定陶的极差最小,为157.8 mm。潍坊的ET0年际波动最大,标准差达到74.4 mm;定陶的年际ET0标准差达到51.4 mm,波动最小。6个站点的ET0年均值随时间呈现不同程度的降低,其中潍坊和兖州为极显著,济南和定陶为显著降低。ET0年均值在空间上的分布规律为:济南站〉潍坊站〉惠民站〉兖州站〉定陶站〉成山头站;6个站点的ET0都是夏季最高,冬季最低。春季平均ET0值中部地区最大,达到409.0 mm,东北部沿海区最小,只有237.2 mm。夏季平均ET0值的空间分布与全年平均ET0值的空间分布较为一致,只在惠民站为中心的小区域内出现降低,与周围区域有反差。秋、冬季平均ET0值在中部及东北部均较大,东北部最大,西南部及西北部较小,最小值出现在西南地区。半湿润气候的惠民站、济南站、潍坊站、定陶站、兖州站的ET0随时间的年内变化曲线为单峰型,峰值均出现在夏季6月,全年的第162天。湿润气候下成山头站的ET0随时间的年内变化曲线呈双峰型,峰值分别出现在春季5月,全年第150天以及秋季9月,全年第270天;山东省ET0与气象要素间的相关性很好,除成山头站的最低气温外,均达到极显著水平。影响山东省湿润气候和半湿润气候ET0变化的主要气象要素分别为最高气温和平均气温。  相似文献   

16.
城市化对北京夏季极端高温影响的数值研究   总被引:5,自引:0,他引:5  
郑祚芳  高华  王在文  刘伟东 《生态环境》2012,(10):1689-1694
利用一个耦合了城市冠层模式(UCM)的区域数值模拟系统(WRF/NCAR),引入由LandsatTM提取的京津冀区域30m分辨率下垫面GIS数据集代替美国USGS地表分类数据,对2009年6月24—25日出现在北京地区的一次超过40℃极端高温天气过程进行了高分辨率数值模拟,用以考察WRF/UCM系统对北京“城市热岛”及城市高温天气的模拟效果,并分析了城市化对北京地区城市高温和地表能量平衡的影响及其日变化特征。结果表明:采用精细化下垫面分类数据集后能更好地模拟出主要高温区的分布特征,并能较好再现夜间的“城市热岛”效应。城市化发展对近地层气温的影响主要表现在会促使城区及其下风向近郊区气温的升高,增幅可达0.5~2℃,这与城市热岛及其下游效应有关。城市下垫面的高粗糙度对近地层风速表现出明显的阻挡效应,表现在模拟的10m风场减弱明显。考虑了城市下垫面属性的敏感性试验更好地再现了城区温度的日变化,其模拟的日间最高温度与实际观测值更为接近,也较好地模拟出了城区具有较高最低温度的特征。通过城区与郊区能量平衡过程差异的分析表明,城市化可以显著改变能量平衡中各项所占的比重。地表对近地层大气热量输送过程的变化表明随着城市下垫面的日愈扩大,会显著增强白天地表对大气的向上感热输送,增大城区日间出现高温的可能。夜间,模式反映出地表能量收入来自土壤热通量的向上输送,同样由于城区的潜热通量小,收入的能量仍主要以感热形式加热大气,夜间城区具有较高的最低温度并表现出较强的热岛特征,主要与夜间感热加热的持续相关。  相似文献   

17.
Soil moisture variability in natural landscapes has been widely studied; however, less attention has been paid to its variability in the urban landscapes with respect to the possible influence of texture stratification and irrigation management. Therefore, a case study was carried out in the Beijing Olympic Forest Park to continuously monitor the soil in three typical profiles from 26 April to 11 November 2010. The texture stratification significantly affected the vertical distribution of moisture in the non-irrigated profile where moisture was mostly below field capacity. In the profile where irrigation was sufficient to maintain moisture above field capacity, gravity flow led to increased moisture with depth and thus eliminated the influence of texture. In the non-irrigated sites, the upper layer (above 80 cm) exhibited long-term moisture persistence with the time scale approximating the average rainfall interval. However, a coarse-textured layer weakened the influence of rainfall, and a fine-textured layer weakened the influence of evapotranspiration, both of which resulted in random noise-like moisture series in the deeper layers. At the irrigated site, frequent irrigation neutralized the influence of evapotranspiration in the upper layer (above 60 cm) and overshadowed the influence of rainfall in the deeper layer. As a result, the moisture level in the upper layer also behaved as a random noise-like series; whereas due to deep transpiration, the moisture of the deep layer had a persistence time-scale longer than a month, consistent with characteristic time-scales found for deep transpiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号