首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
● A review of machine learning (ML) for spatial prediction of soil contamination. ● ML have achieved significant breakthroughs for soil contamination prediction. ● A structured guideline for using ML in soil contamination is proposed. ● The guideline includes variable selection, model evaluation, and interpretation. Soil pollution levels can be quantified via sampling and experimental analysis; however, sampling is performed at discrete points with long distances owing to limited funding and human resources, and is insufficient to characterize the entire study area. Spatial prediction is required to comprehensively investigate potentially contaminated areas. Consequently, machine learning models that can simulate complex nonlinear relationships between a variety of environmental conditions and soil contamination have recently become popular tools for predicting soil pollution. The characteristics, advantages, and applications of machine learning models used to predict soil pollution are reviewed in this study. Satisfactory model performance generally requires the following: 1) selection of the most appropriate model with the required structure; 2) selection of appropriate independent variables related to pollutant sources and pathways to improve model interpretability; 3) improvement of model reliability through comprehensive model evaluation; and 4) integration of geostatistics with the machine learning model. With the enrichment of environmental data and development of algorithms, machine learning will become a powerful tool for predicting the spatial distribution and identifying sources of soil contamination in the future.  相似文献   

2.
● Mechanical behavior of MBT waste affected by loading rate was investigated. ● Shear strength ratio of MBT waste increases with an increase in loading rate. ● Cohesion is inversely related to loading rate. ● Internal friction angles are positively related to loading rate. ● MBT waste from China shows smaller range of φ. Mechanical biological treatment (MBT) technology has attracted increasing attention because it can reduce the volume of waste produced. To deal with the current trend of increasing waste, MBT practices are being adopted to address waste generated in developing urban societies. In this study, a total of 20 specimens of consolidated undrained triaxial tests were conducted on waste obtained from the Hangzhou Tianziling landfill, China, to evaluate the effect of loading rate on the shear strength parameters of MBT waste. The MBT waste samples exhibited an evident strain-hardening behavior, and no peak was observed even when the axial strain exceeded 25%. Further, the shear strength increased with an increase in the loading rate; the effect of loading rate on shear strength under a low confining pressure was greater than that under a high confining pressure. Furthermore, the shear strength parameters of MBT waste were related to the loading rate. The relationship between the cohesion, internal friction angle, and logarithm of the loading rate could be fitted to a linear relationship, which was established in this study. Finally, the ranges of shear strength parameters cohesion c and effective cohesion c ´ were determined as 1.0–8.2 kPa and 2.1–14.9 kPa, respectively; the ranges of the internal friction angle φ and effective internal friction angle φ ´ were determined as 16.2°–29° and 19.8°–43.9°, respectively. These results could be used as a valuable reference for conducting stability analyses of MBT landfills.  相似文献   

3.
● A global snapshot of plastic waste generation and disposal is analysed. ● Effect of plastic pollution on environment and terrestrial ecosystem is reviewed. ● Ecotoxicity and food security from plastic pollution is discussed. Plastic is considered one of the most indispensable commodities in our daily life. At the end of life, the huge ever-growing pile of plastic waste (PW) causes serious concerns for our environment, including agricultural farmlands, groundwater quality, marine and land ecosystems, food toxicity and human health hazards. Lack of proper infrastructure, financial backup, and technological advancement turn this hazardous waste plastic management into a serious threat to developing countries, especially for Bangladesh. A comprehensive review of PW generation and its consequences on environment in both global and Bangladesh contexts is presented. The dispersion routes of PW from different sources in different forms (microplastic, macroplastic, nanoplastic) and its adverse effect on agriculture, marine life and terrestrial ecosystems are illustrated in this work. The key challenges to mitigate PW pollution and tackle down the climate change issue is discussed in this work. Moreover, way forward toward the design and implementation of proper PW management strategies are highlighted in this study.  相似文献   

4.
● Four Ca. Brocadia species were observed during the spontaneously enrichment. ● Novel anammox species SW510 and SW773 dominated the full-scale ecosystem. ● Urease and cyanase genes were detected in the new anammox genomes. ● Functional differentiation potentially facilitated co-occurrence of anammox species. The increasing application of anammox processes suggests their enormous potential for nitrogen removal in wastewater treatment facilities. However, the functional potentials and ecological differentiation of cooccurring anammox species in complex ecosystems have not been well elucidated. Herein, by utilizing functional reconstruction and comparative genome analysis, we deciphered the cooccurring mechanisms of four Candidatus Brocadia species that were spontaneously enriched in a full-scale swine wastewater treatment system. Phylogenetic analysis indicated that species SW172 and SW745 were closely related to Ca. Brocadia caroliniensis and Ca. Brocadia sapporoensis, respectively, whereas the dominant species SW510 and SW773, with a total average abundance of 34.1%, were classified as novel species of the genus Ca. Brocadia. Functional reconstruction revealed that the novel species SW510 can encode both cytochrome cd1-type nitrite reductase and hydroxylamine oxidase for nitrite reduction. In contrast, the detected respiratory pentaheme cytochrome c nitrite reductase and acetate kinase genes suggested that SW773 likely reduced nitrite to ammonium with acetate as a carbon source. Intriguingly, the presence of genes encoding urease and cyanase indicated that both novel species can use diverse organic nitrogen compounds in addition to ammonia and nitrite as substrates. Taken together, the recovery and comparative analysis of these anammox genomes expand our understanding of the functional differentiation and cooccurrence of the genus Ca. Brocadia in wastewater treatment systems.  相似文献   

5.
● A database of municipal solid waste (MSW) generation in China was established. ● An accurate MSW generation prediction model (WGMod) was constructed. ● Key factors affecting MSW generation were identified. ● MSW trends generation in Beijing and Shenzhen in the near future are projected. Integrated management of municipal solid waste (MSW) is a major environmental challenge encountered by many countries. To support waste treatment/management and national macroeconomic policy development, it is essential to develop a prediction model. With this motivation, a database of MSW generation and feature variables covering 130 cities across China is constructed. Based on the database, advanced machine learning (gradient boost regression tree) algorithm is adopted to build the waste generation prediction model, i.e., WGMod. In the model development process, the main influencing factors on MSW generation are identified by weight analysis. The selected key influencing factors are annual precipitation, population density and annual mean temperature with the weights of 13%, 11% and 10%, respectively. The WGMod shows good performance with R2 = 0.939. Model prediction on MSW generation in Beijing and Shenzhen indicates that waste generation in Beijing would increase gradually in the next 3–5 years, while that in Shenzhen would grow rapidly in the next 3 years. The difference between the two is predominately driven by the different trends of population growth.  相似文献   

6.
● A machine learning model was used to identify lake nutrient pollution sources. ● XGBoost model showed the best performance for lake water quality prediction. ● Model feature size was reduced by screening the key features with the MIC method. ● TN and TP concentrations of Lake Taihu are mainly affected by endogenous sources. ● Next-month lake TN and TP concentrations were predicted accurately. Effective control of lake eutrophication necessitates a full understanding of the complicated nitrogen and phosphorus pollution sources, for which mathematical modeling is commonly adopted. In contrast to the conventional knowledge-based models that usually perform poorly due to insufficient knowledge of pollutant geochemical cycling, we employed an ensemble machine learning (ML) model to identify the key nitrogen and phosphorus sources of lakes. Six ML models were developed based on 13 years of historical data of Lake Taihu’s water quality, environmental input, and meteorological conditions, among which the XGBoost model stood out as the best model for total nitrogen (TN) and total phosphorus (TP) prediction. The results suggest that the lake TN is mainly affected by the endogenous load and inflow river water quality, while the lake TP is predominantly from endogenous sources. The prediction of the lake TN and TP concentration changes in response to these key feature variations suggests that endogenous source control is a highly desirable option for lake eutrophication control. Finally, one-month-ahead prediction of lake TN and TP concentrations (R2 of 0.85 and 0.95, respectively) was achieved based on this model with sliding time window lengths of 9 and 6 months, respectively. Our work demonstrates the great potential of using ensemble ML models for lake pollution source tracking and prediction, which may provide valuable references for early warning and rational control of lake eutrophication.  相似文献   

7.
● Lipid can promote PA production on a target from food waste. ● PA productivity reached 6.23 g/(L∙d) from co-fermentation of lipid and food waste. ● Lipid promoted the hydrolysis and utilization of protein in food waste. Prevotella , Veillonella and norank _f _Propioni bacteriaceae were enriched. ● Main pathway of PA production was the succinate pathway. Food waste (FW) is a promising renewable low-cost biomass substrate for enhancing the economic feasibility of fermentative propionate production. Although lipids, a common component of food waste, can be used as a carbon source to enhance the production of volatile fatty acids (VFAs) during co-fermentation, few studies have evaluated the potential for directional propionate production from the co-fermentation of lipids and FW. In this study, co-fermentation experiments were conducted using different combinations of lipids and FW for VFA production. The contributions of lipids and FW to propionate production, hydrolysis of substrates, and microbial composition during co-fermentation were evaluated. The results revealed that lipids shifted the fermentation type of FW from butyric to propionic acid fermentation. Based on the estimated propionate production kinetic parameters, the maximum propionate productivity increased significantly with an increase in lipid content, reaching 6.23 g propionate/(L∙d) at a lipid content of 50%. Propionate-producing bacteria Prevotella, Veillonella, and norank_f_Propionibacteriaceae were enriched in the presence of lipids, and the succinate pathway was identified as a prominent fermentation route for propionate production. Moreover, the Kyoto Encyclopedia of Genes and Genomes functional annotation revealed that the expression of functional genes associated with amino acid metabolism was enhanced by the presence of lipids. Collectively, these findings will contribute to gaining a better understanding of targeted propionate production from FW.  相似文献   

8.
● Status of inactivation of pathogenic microorganisms by SO4•− is reviewed. ● Mechanism of SO4•− disinfection is outlined. ● Possible generation of DBPs during disinfection using SO4•− is discussed. ● Possible problems and challenges of using SO4•− for disinfection are presented. Sulfate radicals have been increasingly used for the pathogen inactivation due to their strong redox ability and high selectivity for electron-rich species in the last decade. The application of sulfate radicals in water disinfection has become a very promising technology. However, there is currently a lack of reviews of sulfate radicals inactivated pathogenic microorganisms. At the same time, less attention has been paid to disinfection by-products produced by the use of sulfate radicals to inactivate microorganisms. This paper begins with a brief overview of sulfate radicals’ properties. Then, the progress in water disinfection by sulfate radicals is summarized. The mechanism and inactivation kinetics of inactivating microorganisms are briefly described. After that, the disinfection by-products produced by reactions of sulfate radicals with chlorine, bromine, iodide ions and organic halogens in water are also discussed. In response to these possible challenges, this article concludes with some specific solutions and future research directions.  相似文献   

9.
● Effect of composting approaches on dissolved organic matter (DOM). ● Effect of composting conditions on the properties of DOM. ● Character indexes of DOM varied in composting. ● The size, hydrophobicity, humification, and electron transfer capacity increased. ● The hydrophilicity, protein-like materials, and aliphatic components reduced. As the most motive organic fraction in composting, dissolved organic matter (DOM) can contribute to the transfer and dispersal of pollutants and facilitate the global carbon cycle in aquatic ecosystems. However, it is still unclear how composting approaches and conditions influence the properties of compost-derived DOM. Further details on the shift of DOM character indexes are required. In this study, the change in properties of compost-derived DOM at different composting approaches and the effect of composting conditions on the DOM characteristics are summarized. Thereafter, the change in DOM character indexes’ in composting was comprehensively reviewed. Along with composting, the elements and spectral properties (chromophoric DOM (CDOM) and fluorescent DOM (FDOM)) were altered, size and hydrophobicity increased, and aromatic-C and electron transfer capacity were promoted. Finally, some prospects to improve this study were put forward. This paper should facilitate the people who have an interest in tracing the fate of DOM in composting.  相似文献   

10.
● Anthropogenic circularity science is an emerging interdisciplinary field. ● Anthropogenic circularity was one effective strategy against metal criticality. ● Carbon neutrality is becoming the new industry paradigm around the world. ● Growing circularity could potentially minimize the CO2 emission. Resource depletion and environmental degradation have fueled a burgeoning discipline of anthropogenic circularity since the 2010s. It generally consists of waste reuse, remanufacturing, recycling, and recovery. Circular economy and “zero-waste” cities are sweeping the globe in their current practices to address the world’s grand concerns linked to resources, the environment, and industry. Meanwhile, metal criticality and carbon neutrality, which have become increasingly popular in recent years, denote the material's feature and state, respectively. The goal of this article is to determine how circularity, criticality, and neutrality are related. Upscale anthropogenic circularity has the potential to expand the metal supply and, as a result, reduce metal criticality. China barely accomplished 15 % of its potential emission reduction by recycling iron, copper, and aluminum. Anthropogenic circularity has a lot of room to achieve a win-win objective, which is to reduce metal criticality while also achieving carbon neutrality in a near closed-loop cycle. Major barriers or challenges for conducting anthropogenic circularity are deriving from the inadequacy of life-cycle insight governance and the emergence of anthropogenic circularity discipline. Material flow analysis and life cycle assessment are the central methodologies to identify the hidden problems. Mineral processing and smelting, as well as end-of-life management, are indicated as critical priority areas for enhancing anthropogenic circularity.  相似文献   

11.
● Fundamentals of membrane fouling are comprehensively reviewed. ● Contribution of thermodynamics on revealing membrane fouling mechanism is summarized. ● Quantitative approaches toward thermodynamic fouling mechanisms are deeply analyzed. ● Inspirations of thermodynamics for membrane fouling mitigation are briefly discussed. ● Research prospects on thermodynamics and membrane fouling are forecasted. Membrane technology is widely regarded as one of the most promising technologies for wastewater treatment and reclamation in the 21st century. However, membrane fouling significantly limits its applicability and productivity. In recent decades, research on the membrane fouling has been one of the hottest spots in the field of membrane technology. In particular, recent advances in thermodynamics have substantially widened people’s perspectives on the intrinsic mechanisms of membrane fouling. Formulation of fouling mitigation strategies and fabrication of anti-fouling membranes have both benefited substantially from those studies. In the present review, a summary of the recent results on the thermodynamic mechanisms associated with the critical adhesion and filtration processes during membrane fouling is provided. Firstly, the importance of thermodynamics in membrane fouling is comprehensively assessed. Secondly, the quantitative methods and general factors involved in thermodynamic fouling mechanisms are critically reviewed. Based on the aforementioned information, a brief discussion is presented on the potential applications of thermodynamic fouling mechanisms for membrane fouling control. Finally, prospects for further research on thermodynamic mechanisms underlying membrane fouling are presented. Overall, the present review offers comprehensive and in-depth information on the thermodynamic mechanisms associated with complex fouling behaviors, which will further facilitate research and development in membrane technology.  相似文献   

12.
● SMX promotes hydrogen production from dark anaerobic sludge fermentation. ● SMX significantly enhances the hydrolysis and acidification processes. ● SMX suppresses the methanogenesis process in order to reduce hydrogen consumption. ● SMX enhances the relative abundance of hydrogen-VFAs producers. ● SMX brings possible environmental risks due to the enrichment of ARGs. The impact of antibiotics on the environmental protection and sludge treatment fields has been widely studied. The recovery of hydrogen from waste activated sludge (WAS) has become an issue of great interest. Nevertheless, few studies have focused on the impact of antibiotics present in WAS on hydrogen production during dark anaerobic fermentation. To explore the mechanisms, sulfamethoxazole (SMX) was chosen as a representative antibiotic to evaluate how SMX influenced hydrogen production during dark anaerobic fermentation of WAS. The results demonstrated SMX promoted hydrogen production. With increasing additions of SMX from 0 to 500 mg/kg TSS, the cumulative hydrogen production elevated from 8.07 ± 0.37 to 11.89 ± 0.19 mL/g VSS. A modified Gompertz model further verified that both the maximum potential of hydrogen production (Pm) and the maximum rate of hydrogen production (Rm) were promoted. SMX did not affected sludge solubilization, but promoted hydrolysis and acidification processes to produce more hydrogen. Moreover, the methanogenesis process was inhibited so that hydrogen consumption was reduced. Microbial community analysis further demonstrated that the introduction of SMX improved the abundance of hydrolysis bacteria and hydrogen-volatile fatty acids (VFAs) producers. SMX synergistically influenced hydrolysis, acidification and acetogenesis to facilitate the hydrogen production.  相似文献   

13.
● Health hazards of plastic waste on environment are discussed. ● Microbial species involved in biodegradation of plastics are being reviewed. ● Enzymatic biodegradation mechanism of plastics is outlined. ● Analytical techniques to evaluate the plastic biodegradation are presented. The abundance of synthetic polymers has increased due to their uncontrolled utilization and disposal in the environment. The recalcitrant nature of plastics leads to accumulation and saturation in the environment, which is a matter of great concern. An exponential rise has been reported in plastic pollution during the corona pandemic because of PPE kits, gloves, and face masks made up of single-use plastics. The physicochemical methods have been employed to degrade synthetic polymers, but these methods have limited efficiency and cause the release of hazardous metabolites or by-products in the environment. Microbial species, isolated from landfills and dumpsites, have utilized plastics as the sole source of carbon, energy, and biomass production. The involvement of microbial strains in plastic degradation is evident as a substantial amount of mineralization has been observed. However, the complete removal of plastic could not be achieved, but it is still effective compared to the pre-existing traditional methods. Therefore, microbial species and the enzymes involved in plastic waste degradation could be utilized as eco-friendly alternatives. Thus, microbial biodegradation approaches have a profound scope to cope with the plastic waste problem in a cost-effective and environmental-friendly manner. Further, microbial degradation can be optimized and combined with physicochemical methods to achieve substantial results. This review summarizes the different microbial species, their genes, biochemical pathways, and enzymes involved in plastic biodegradation.  相似文献   

14.
● We have provided an activated method to remove the toxicity of antibiotic residue. ● PFRB can greatly improve the salt adsorption capacity of MCDI. ● The hierarchical porous and abundant O/N-doped played the key role for the high-capacity desalination. ● A new field of reuse of penicillin fermentation residue has been developed. Membrane capacitive deionization (MCDI) is an efficient desalination technology for brine. Penicillin fermentation residue biochar (PFRB) possesses a hierarchical porous and O/N-doped structure which could serve as a high-capacity desalination electrode in the MCDI system. Under optimal conditions (electrode weight, voltage, and concentration) and a carbonization temperature of 700 °C, the maximum salt adsorption capacity of the electrode can reach 26.4 mg/g, which is higher than that of most carbon electrodes. Furthermore, the electrochemical properties of the PFRB electrode were characterized through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with a maximum specific capacitance of 212.18 F/g. Finally, biotoxicity tests have showed that PFRB was non-biotoxin against luminescent bacteria and the MCDI system with the PFRB electrode remained stable even after 27 adsorption–desorption cycles. This study provides a novel way to recycle penicillin residue and an electrode that can achieve excellent desalination.  相似文献   

15.
● Energy harvesters harness multiple energies for self-powered water purification. ● Hybrid energy harvesters enable continuous output under fluctuating conditions. ● Mechanical, thermal, and solar energies enable synergic harvesting. ● Perspectives of hybrid energy harvester-driven water treatment are proposed. The development of self-powered water purification technologies for decentralized applications is crucial for ensuring the provision of drinking water in resource-limited regions. The elimination of the dependence on external energy inputs and the attainment of self-powered status significantly expands the applicability of the treatment system in real-world scenarios. Hybrid energy harvesters, which convert multiple ambient energies simultaneously, show the potential to drive self-powered water purification facilities under fluctuating actual conditions. Here, we propose recent advancements in hybrid energy systems that simultaneously harvest various ambient energies (e.g., photo irradiation, flow kinetic, thermal, and vibration) to drive water purification processes. The mechanisms of various energy harvesters and point-of-use water purification treatments are first outlined. Then we summarize the hybrid energy harvesters that can drive water purification treatment. These hybrid energy harvesters are based on the mechanisms of mechanical and photovoltaic, mechanical and thermal, and thermal and photovoltaic effects. This review provides a comprehensive understanding of the potential for advancing beyond the current state-of-the-art of hybrid energy harvester-driven water treatment processes. Future endeavors should focus on improving catalyst efficiency and developing sustainable hybrid energy harvesters to drive self-powered treatments under unstable conditions (e.g., fluctuating temperatures and humidity).  相似文献   

16.
● Properties and performance relationship of CSBT photocatalyst were investigated. ● Properties of CSBT were controlled by simply manipulating glycerol content. ● Performance was linked to semiconducting and physicochemical properties. ● CSBT (W:G ratio 9:1) had better performance with lower energy consumption. ● Phenols were reduced by 48.30% at a cost of $2.4127 per unit volume of effluent. Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater.  相似文献   

17.
● Advances, challenges, and opportunities for catalytic water pollutant reduction. ● Cases of Pd-based catalysts for nitrate, chlorate, and perchlorate reduction. ● New functionalities developed by screening and design of catalytic metal sites. ● Facile catalyst preparation approaches for convenient catalyst optimization. ● Rational design and non-decorative effort are essential for future work. In this paper, we discuss the previous advances, current challenges, and future opportunities for the research of catalytic reduction of water pollutants. We present five case studies on the development of palladium-based catalysts for nitrate, chlorate, and perchlorate reduction with hydrogen gas under ambient conditions. We emphasize the realization of new functionalities through the screening and design of catalytic metal sites, including (i) platinum group metal (PGM) nanoparticles, (ii) the secondary metals for improving the reaction rate and product selectivity of nitrate reduction, (iii) oxygen-atom-transfer metal oxides for chlorate and perchlorate reduction, and (iv) ligand-enhanced coordination complexes for substantial activity enhancement. We also highlight the facile catalyst preparation approach that brought significant convenience to catalyst optimization. Based on our own studies, we then discuss directions of the catalyst research effort that are not immediately necessary or desirable, including (1) systematic study on the downstream aspects of under-developed catalysts, (2) random integration with hot concepts without a clear rationale, and (3) excessive and decorative experiments. We further address some general concerns regarding using H2 and PGMs in the catalytic system. Finally, we recommend future catalyst development in both “fundamental” and “applied” aspects. The purpose of this perspective is to remove major misconceptions about reductive catalysis research and bring back significant innovations for both scientific advancements and engineering applications to benefit environmental protection.  相似文献   

18.
● BACs were used in electrode material for both fixed and flowing electrodes. ● ASAR of FCDI and MCDI was improved by 134% and 17%, respectively. ● ENRS of FCDI and MCDI was improved by 21% and 53%. ● The mechanism of improving desalination performance was analyzed in detail. Capacitive deionization (CDI) is a novel electrochemical water-treatment technology. The electrode material is an important factor in determining the ion separation efficiency. Activated carbon (AC) is extensively used as an electrode material; however, there are still many deficiencies in commercial AC. We adopted a simple processing method, ball milling, to produce ball milled AC (BAC) to improve the physical and electrochemical properties of the original AC and desalination efficiency. The BAC was characterized in detail and used for membrane capacitive deionization (MCDI) and flow-electrode capacitive deionization (FCDI) electrode materials. After ball milling, the BAC obtained excellent pore structures and favorable surfaces for ion adsorption, which reduced electron transfer resistance and ion migration resistance in the electrodes. The optimal ball-milling time was 10 h. However, the improved effects of BAC as fixed electrodes and flow electrodes are different and the related mechanisms are discussed in detail. The average salt adsorption rates (ASAR) of FCDI and MCDI were improved by 134% and 17%, respectively, and the energy-normalized removal salt (ENRS) were enhanced by 21% and 53%, respectively. We believe that simple, low-cost, and environmentally friendly BAC has great potential for practical engineering applications of FCDI and MCDI.  相似文献   

19.
● Term of manganese-oxidizing microorganisms should be reconsidered. ● Visible light induces heterotrophic bacteria to produce superoxide. ● Heterotrophic bacteria oxidize Mn(II) ions with a fast oxidation rate. ● Superoxide oxidizing Mn(II) ions is an unintended side reaction of bacteria. ● Superoxide is an important oxidation force of Mn(II) in the environment. Manganese oxides are widely distributed in soils and sediments, affecting the migration and transformation of heavy metals and organic pollutants. The microbial conversion of soluble Mn(II) into insoluble Mn(III/IV) oxides is considered to be the initial source of manganese oxides in the environment; however, whether this process is related to a physiological role remains unclear. Here, we explored the microbial manganese oxidation process under visible light by using coastal surface seawater microorganisms. Visible light greatly promotes the oxidation rate of Mn(II), and the average rate reaches 64 μmol/(L·d). The generated manganese oxides were then conducive to Mn(II) oxidation, thus the rapid manganese oxidation was the result of the combined action of biotic and abiotic, and biological function accounts for 88 % ± 4 %. Extracellular superoxide produced by microorganisms induced by visible light is the decisive factor for the rapid manganese oxidation in our study. But the production of these superoxides does not require the presence of Mn(II) ions, the Mn(II) oxidation process was more like an unintentional side reaction, which did not affect the growth of microorganisms. More than 70 % of heterotrophic microorganisms in nature are capable of producing superoxide, based on the oxidizing properties of free radicals, all these bacteria can participate in the geochemical cycle of manganese. What’s more, the superoxide oxidation pathway might be a significant natural source of manganese oxide.  相似文献   

20.
● A composite aerogel was simply obtained to remove various fluoroquinolones (FQs). ● The structural and textural properties of this composite aerogel are improved. ● Its adsorption capacity was improved at a low content of coexisting Cu2+ or Fe3+ ion. ● Two substructural analogs of FQs are compared to explore the adsorption mechanisms. ● This aerogel after saturated adsorption can be reused directly for Cu2+ adsorption. 3D composite aerogels (CMC-CG) composed of carboxymethyl cellulose and κ-carrageenan were designed and fabricated using the one-pot synthesis technique. The optimized CMC-CG showed a good mechanical property and a high swelling ratio due to its superior textural properties with a proper chemically cross-linked interpenetrating network structure. CMC-CG was utilized for the removal of various fluoroquinolones (FQs) from water and exhibited high adsorption performance because of effective electrostatic attraction and hydrogen bonding interactions. Ciprofloxacin (CIP), a popular FQ, was used as the representative. The optimized CMC-CG had a theoretically maximal CIP uptake of approximately 1.271 mmol/g at the pH of 5.0. The adsorption capacity of CMC-CG was improved in the presence of some cations, Cu2+ and Fe3+ ions, at a low concentration through the bridging effect but was reduced at a high concentration. The investigation of adsorption mechanisms, based on the adsorption kinetics, isotherms and thermodynamic study, Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy analyses before and after adsorption, and changes in the adsorption performance of CMC-CG toward two molecular probes, further indicated that electrostatic attraction was the dominant interaction rather than hydrogen bonding in this adsorption. CMC-CG after saturated adsorption of CIP could be easily regenerated using a dilute NaCl aqueous solution and reused efficiently. Moreover, the disused aerogel could still be reused as a new adsorbent for effective adsorption of Cu2+ ion. Overall, this study suggested the promising applications of this composite aerogel as an eco-friendly, cost-effective, and recyclable adsorbent for the efficient removal of FQs from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号