首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
制药企业密集区空气中VOCs污染特性及健康风险评价   总被引:2,自引:0,他引:2  
为研究制药企业密集区产生的挥发性有机物(VOCs)对环境和人群健康的影响,在制药企业密集区周边8个点位采集168个样品,采用预浓缩-GC-MS法测定VOCs的含量,并通过美国环境保护署(US EPA)的健康风险评价模型,对制药企业密集区挥发性有机物(VOCs)污染进行评价.结果表明,制药企业密集区共检测出32种物质,总挥发性有机物(TVOC)浓度为2.04 mg·m-3,芳香烃类和酮类所占比例较高,分别占总VOCs浓度的43%和28%;大部分VOCs浓度是背景值的十倍或百倍.检测到的19种存在健康危害的VOCs不会对人体产生明显的非致癌健康危害;但1,3-丁二烯、氯仿、四氯化碳、苯和1,1,2-三氯乙烷等5种VOCs对人体有致癌健康危害.密集区总VOCs的累积致癌风险指数远超可接受数量级,说明制药企业密集区排放的VOCs对人体以致癌健康危害为主.  相似文献   

2.
将自主研制的光离子化检测器(PID)配备在研发的微型气相色谱仪GC190A上,以空气为载气,用于苯系挥发性有机物(VOCs)的快速灵敏分析.无需样品前处理,将标准气体稀释,即可实现快速测定.实验表明,对挥发性有机物苯、甲苯、乙苯、对间二甲苯、邻二甲苯和苯乙烯六种成份的低浓度样品气分析,重现性良好,其中对浓度3.02 mg·m~(-3)的6次分析结果的相对标准偏差低于2.87%,对苯的检测限低至0.3 nmol·mol~(-1).该微型色谱仪具有灵敏度高、稳定性好、体积小、重量轻、经济环保、现场快速分析等特点,操作简单,作为产品方便客户使用,具有广阔的市场前景.  相似文献   

3.
本文对贵阳市大气挥发性有机物进行了初步分析研究.采用罐采样方法在贵阳市采集了环境空气样品,利用三级冷阱预浓缩-GC/Dean-switch/FID/FID技术,分析了59种大气光化学活性挥发性有机物,并计算了各组分的臭氧生成潜势及羟基自由基消耗速率.结果表明,贵阳市大气挥发性有机物的平均体积分数为(23.06±17. 85)×10~(-9),其中丙烷的体积分数最大.贵阳市不同类别大气挥发性有机物的占比为:烷烃(58.77%)苯系物(16.41%)人为源烯烃(10.84%)炔烃(8.86%)植物源排放VOCs(BVOC)(5.12%),不同功能区大气VOCs的组成特征存在一定差异.贵阳市大气挥发性有机物的总臭氧生成潜势为91.51×10-9(体积分数),其中苯系物对总臭氧生成潜势的贡献最大(约占38%);贵阳市大气挥发性有机物总的羟基自由基消耗速率为6.15 s-1,烯烃类对总的羟基自由基消耗速率的贡献最大.  相似文献   

4.
2019年6月和8月在宁夏回族自治区银川市及周边6个点位进行了环境空气挥发性有机物(VOCs)的观测研究.利用苏码罐采样-三级冷阱预浓缩-GC-MS/FID技术测定环境空气样品中56种挥发性有机物组分;分析该地区环境空气中挥发性有机物的污染特征和来源,计算各组分臭氧和二次有机气溶胶的生成潜势.结果表明,工业区、商业/交...  相似文献   

5.
根据美国环境保护署(EPA)方法,采用赛默飞世尔公司ISQ单四极杆气质联用仪建立了挥发性有机物(VOCs)的分析检测方法.整个方法所需的仪器包括进样器、气相色谱、质谱、数据处理软件等.为了满足法规中日益严格的检出限要求及新型污染物的加入,我们对实验方案进行了改进,以提高检测灵敏度及提高样品通量.  相似文献   

6.
采用TCT-GC/MS方法对鹫峰国家森林公园大气中挥发性有机物(VOCs)的组成进行分析,共检测到175种挥发性有机化合物,主要成分包括烷烃类、芳香烃类、酯类、酸类、醛类、酮类和萜烯类等七类,平均相对含量分别为48.11%,15.67%,17.28%,3.13%,3.17%,1.36%和1.45%;活动区中检测到的挥发性有机化合物种类最多,缓冲区次之,非活动区最少,这与每个区中人类活动的频率相一致.同时分析了大气中的VOCs的时空分布特点.  相似文献   

7.
对污染场地修复过程挥发性有机物(VOCs)散逸及浓度分布进行了检测分析,通过光离子气体检测仪(PID)现场快速监测与采样管采样气相色谱质谱分析技术相结合的方式,进行了修复过程中VOCs散逸浓度检测,同时利用吹扫捕集法+色谱/质谱检测分析方法进行了VOCs污染场地内土壤中浓度检测.研究了VOCs在挖掘扰动过程中的散逸行为,并对气体中的VOCs浓度平面分布进行分析.结果表明,污染土壤中典型VOCs的散逸率整体上较高,对于该污染场地土壤特质,污染土壤扰动过程中,1,2-二氯乙烷散逸程度最高,苯散逸程度最低.VOCs浓度并不因距离增加而呈现明显负相关关系,污染物在扩散过程中会出现波峰波谷的现象.  相似文献   

8.
HS?SPME?GC/MS同时测定污废水中多种 VOCs异味物质   总被引:1,自引:0,他引:1  
采用顶空固相微萃取与气相色谱质谱联用技术(HS-SPME-GC/MS),建立了快速定量分析污废水中多种挥发性有机异味物质(VOCs)的方法.VOCs异味污染物主要为含氧有机物(OVOCs)、硫醚类(VSCs)和苯系物(BTEX)等三大类.针对不同异味物质的物化性质,实验优化了HS-SPME条件,如萃取纤维涂层、萃取温度、萃取时间、盐析效应及解析时间等.研究结果表明,DVB/CAR/PDMS (50/30μm)萃取头针对三类物质的选择性最高.同时综合各类异味物质的性质,优化顶空固相微萃取实验条件为:在水样中加入20%(W/V)的NaCl,65℃孵化条件下萃取30 min,解析180 s.所建方法的多种VOCs在其各自线性范围内线性良好,R~2均大于0.98,相对标准偏差为9.8%—15.5%,检出限为4—55 ng·L~(-1),加标回收率为79.1%—108.6%.对不同污废水进行了检测,实验结果证明,此方法可满足不同污废水中多种痕量VOCs异味物质的同时检测.  相似文献   

9.
采用预浓缩-气相色谱法测定30种挥发性有机物(VOCs)气体标准样品,根据不同条件下各组分响应值和相对响应值的变化对分析方法进行了优化,考察了各级冷阱冷冻温度、解析时间和解析流速对测定结果的影响.结果表明,在一级冷阱冷冻温度为-185℃,解析流速为20 m L·min~(-1),解析时间120 s;二级冷阱冷冻温度为-50℃,解析时间1 s;三级冷阱冷冻温度为-185℃条件下样品的测定结果最优,采用优化后的实验条件对样品重复分析6次,各组分RSD在1.1%—2.4%之间,结果表明该方法具有良好的精密度.可为研究环境监测用多组分混合的低浓度VOCs类气体标准样品的研制提供技术支持.  相似文献   

10.
国家环境标准中规定了固定污染源废气中挥发性有机物的固相吸附-热脱附/气相色谱-质谱法(TDGCMS).综合参考了美国EPA的现行标准,摸索出了适合在国内推广的检测方法,即采用热脱附-气相色谱质谱(TD-GCMS),对环境空气中35种痕量的VOCs进行分析检测.  相似文献   

11.
蒋燕  尹元畅  王波  王斌 《环境化学》2014,(11):2005-2006
大气中挥发性有机物(VOCs)通常具有光化学活性,是对流层臭氧(O3)和二次有机气溶胶(SOA)的重要前体物.据估算,沈阳市2007年餐饮业VOCs排放量达581.1吨[1];而北京市餐饮业每年将有1500吨细粒子有机颗粒物排入大气[2].餐饮油烟作为城市VOCs的重要来源之一,对大气环境具有重要影响.本文利用成都市8家社会餐饮实地监测数据,分析VOCs排放特征,估算全市餐饮业VOCs排放总量,并计算其臭氧和  相似文献   

12.
对广州大坦沙污水处理厂各工艺阶段污水中挥发性有机物(VOCs)的测试表明,进水中主要有害VOCs为苯系物和卤代烃;进水和出水比较,苯 甲苯、乙苯、二甲苯(合称BTEX) 的去除率接近100%,污水中几种主要卤代烃的去除效率范围为79%—89%.VOCs主要的去除作用发生在生物反应池,特别是厌氧阶段,本研究还对污水处理厂几种典型挥发有机物排放到周围空气中的量进行了理论估计,计算表明卤代烃进入空气中的比例高于BTEX.  相似文献   

13.
为开展天津市挥发性有机物(volaitle organic compounds,简称VOCs)普查,修正天津市挥发性有机物排放因子,开展了滨海新区重点行业挥发性有机物调查工作,调查企业的原材料使用量、生产工艺、污染治理设施等情况,根据环保部制定的排放因子对被调查企业挥发性有机物排放量进行估算;分析估算结果,并与污普库估算数据及企业填报监测数据进行比对分析。发现估算结果较为准确,且滨海新区单一企业挥发性有机物排放量最大的为石油化工及储运行业,建议下一步重点开展石油化工及储运行业挥发性有机物治理及泄漏检测与修复技术,加强无组织源排放治理。  相似文献   

14.
土壤中半挥发性有机污染物检测,由于土壤本身基体复杂且涉及的半挥发性有机物种类较多,给实验带来了一定难度.本实验方法参考EPA8270D和新国标HJ834—2017、HJ835—2017的内容,针对147种SVOCs开发了一针进样快速筛查分析的方法,土壤中苯系物、苯酚类、苯胺类、硝基芳香烃类、氯代芳烃类、多环芳烃类、有机氯农药等半挥发性有机物绝大多数获得了较好的回收率和检测限,整个实验过程样品前处理快速、简便,仪器分析方法快速、稳定.  相似文献   

15.
我国大气背景点挥发性有机污染物的浓度水平与组成特征   总被引:1,自引:0,他引:1  
2010—2011年间,在全国范围内选择具有代表性的10个大气背景点开展相关研究,对大气背景点中VOCs的浓度水平与组成特征进行了系统的分析.研究结果表明,我国大气背景点挥发性有机物浓度范围为(3.82±2.96)μg.m-3—(22.74±3.60)μg.m-3,与其它国家和地区背景点空气中VOCs浓度相比,我国背景点空气中VOCs浓度处于较低水平.在空间分布上,大气背景点空气中VOCs浓度呈现东部较高,西部较低的态势,在季节变化上,除河北承德外,山东长岛、重庆武隆、西藏曲水和青海湖4个背景点均呈现出夏季空气中VOCs浓度高于冬季的趋势,这主要是由于夏季气温高,有利于VOCs挥发的原因.初步来源分析结果表明,我国背景点大气中挥发性有机物可能主要来源于自然燃烧、大气传输和局地的污染影响.  相似文献   

16.
北京市大气挥发性有机物(VOCs)的污染特征及来源   总被引:1,自引:0,他引:1  
挥发性有机物(VOCs)的排放是大气污染的重要来源,已经成为我国最重要的环境问题之一,北京市的污染尤为严重。本文对北京市近年来大气挥发性有机物、苯系物的污染情况和来源以及不同控制措施下挥发性有机物的浓度变化进行了总结概括,并对今后的研究进行了展望。  相似文献   

17.
建立了罐采样、吸附剂辅助电子制冷预浓缩-柱箱制冷GCMS/FID同时测定大气中117种挥发性有机物(VOCs)的方法。样品经填充吸附剂的电子制冷预浓缩系统除水、除CO2、浓缩和热脱附后,采用柱箱制冷及GCMS/FID的多维切割单元,将5种C2-C3组分切到二维色谱柱进行分离并进入FID检测,甲醛及其他111种VOCs组分留在一维色谱柱进行分离并进入MS检测,甲醛采用SIM模式检测,其余化合物采用Scan模式检测。FID采用外标法定量,MS采用内标法定量。考查了预浓缩系统条件、多维切割条件、质谱条件、气相条件等参数对测试结果的影响,对比了常温柱箱法和柱箱制冷法的效果,并评估了在此优化条件下的方法性能。117种VOCs在0.5—20 nmol·mol-1(甲醛2.5—100 nmol·mol-1)范围内线性关系良好,相关系数(R)在0.9924—0.9999,方法检出限为0.071—0.718μg·m-3,定量限为0.284—2.872μg·m-3。  相似文献   

18.
基于焦作市各类挥发性有机物(VOCs)的活动水平数据,采用排放系数法,编制了焦作市2016年人为源挥发性有机物排放清单.结果表明,2016年焦作市人为源VOCs排放总量为28804.80 t,其中,工艺过程源、溶剂使用源、化石燃料燃烧源、移动源和生物质燃烧源分别占排放总量的36.19%、25.48%、14.38%、13.72%、10.23%.2016年焦作市VOCs的重点排放二级源是非金属矿物制品业、表面涂装业、道路移动源、生物质露天燃烧、工业燃烧,其排放量之和共占排放总量的72.47%.在焦作市各区县中,博爱县、孟州市、武陟县和马村区的排放量较高,4个县区的VOCs排放量均超过3000 t,其排放量之和占排放总量的54.26%.  相似文献   

19.
泰安市大气挥发性有机物污染特征及来源解析   总被引:4,自引:0,他引:4  
李凯  潘宁  梅如波  王玉军 《环境化学》2022,41(2):482-490
2018年夏季对泰安市城区站点的挥发性有机物(VOCs)进行监测,研究了其污染特征、臭氧生成潜势(OFP)和特征污染物比值,利用PMF源解析模型对VOCs的来源进行了解析.结果 表明,观测期间泰安市VOCs体积分数平均值为(16.57±7.99)× 10-9,VOCs中浓度占比最高的为OVOCs(41.9%),其次为烷...  相似文献   

20.
采集北京市某一地下停车场内环境空气样品,利用气相色谱-质谱/氢火焰离子化检测器(GCMSD/FID)测定了挥发性有机物(VOCs)的组成,分析其浓度特征、组分特征和影响因素,运用特征物种比值法和正定矩阵因子分析模型(PMF)解析VOCs来源,采用健康风险评估模型定量评估部分VOCs的健康风险.结果表明,地下停车场内VOCs平均浓度为514.16μg·m-3,其中烷烃占比最大(43.76%),其次是芳香烃(28.89%)、烯烃(10.97%).影响停车场内VOCs浓度的主要因素包括机动车运行工况、机动车进出车次及扩散条件.冷启动工况、较多的出入车次和不利的扩散条件会导致VOCs浓度显著上升.苯/乙苯和苯/甲基叔丁基醚(MTBE)的均值分别为1.5和0.8,表明机动车尾气和汽油挥发是地下停车场内VOCs的主要来源. PMF解析结果表明地下停车场内VOCs的首要来源为机动车尾气源(44.58%),汽油挥发源和汽车内饰挥发源分别贡献24.56%和9.18%.其中,汽油挥发源在08:00—10:00时段贡献最大,机动车尾气源在16:00—18:00时段贡献最大.健康风险评估...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号