首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to tolerate disturbance is a defense strategy that minimizes the effects of damage to fitness and is essential for sustainability of populations, communities, and ecosystems. Despite the apparent benefits of tolerance, there may be an associated cost that results in a deficiency of a system to respond to additional disturbances. Aquatic ecosystems are often exposed to a variety of natural and anthropogenic disturbances, and the effects of these compound perturbations are not well known. In this investigation, we examine whether tolerance to one stressor, metals, results in a cost of increased sensitivity to an additional stressor, ultraviolet-B (UV-B) radiation. Heavy metal pollution is recognized as a major environmental problem in Rocky Mountain streams. These high-elevation, typically clear streams may be at particular risk to elevated UV-B levels associated with reduced levels of ozone. Microcosm experiments were conducted using natural stream benthic communities collected from a reference site and a site with a long-term history of heavy-metal pollution. Direct and interactive effects of heavy metals and UV-B radiation on structural and functional characteristics of benthic communities were evaluated among four treatments: control, UV-B, metals, and metal and UV-B. Communities from the metal-polluted site were more tolerant of metals but less tolerant to UV-B compared to reference communities. Increased mayfly drift and reduced metabolism in response to metal exposure were observed in reference communities but not in the metal-polluted communities. In contrast to these results, UV-B radiation significantly reduced community metabolism, total macroinvertebrate abundance, and abundances of mayflies, caddisflies, and dipterans from the metal-polluted site, but had no effects on benthic communities from the reference site. ANOSIM results demonstrated that community responses differed among treatments at both sites. Metals had the largest impact on community differences at both sites, while UV-B had greater impacts at the metal-polluted site. This research demonstrates the need to account for potential costs associated with tolerance and that these costs can result in behavioral, structural, and functional impacts to benthic communities.  相似文献   

2.
Vasseur DA  Gaedke U 《Ecology》2007,88(8):2058-2071
Community biomass is often less variable than the biomasses of populations within the community, yet attempts to implicate compensatory dynamics between populations as a cause of this relationship often fail. In part, this may be due to the lack of appropriate metrics for variability, but there is also great potential for large-scale processes such as seasonality or longer-term environmental change to obscure important dynamics at other temporal scales. In this study, we apply a scale-resolving method to long-term plankton data, to identify the specific temporal scales at which community-level variability is influenced by synchrony or compensatory dynamics at the population level. We show that variability at both the population and community level is influenced strongly by a few distinct temporal scales: in phytoplankton, ciliate, rotifer, and crustacean communities, synchronous dynamics are predominant at most temporal scales. However, in phytoplankton and crustacean communities, compensatory dynamics occur at a sub-annual scale (and at the annual scale in crustaceans) leading to substantial reductions in community-level variability. Aggregate measures of population and community variability do not detect compensatory dynamics in these communities; thus, resolving their scale dependence unmasks dynamics that are important for community stability in this system. The methods and results presented herein will ultimately lead to a better understanding of how stability is achieved in communities.  相似文献   

3.
Soil respiration is one of the main CO2 sources from terrestrial ecosystems. Soil respiration is therefore a major source of greenhouse gas. Knowledge of the impact of agronomic practices such as manuring on the stability, for example resistance and resilience, of heterotrophic C–CO2 respiration to disturbance is scarce. Here, we studied the stability of soil microbial heterotrophic respiration of two tropical soils from plots annually enriched or not with manure applications during more than 20 years. Stability was quantified after heating soils artificially. We hypothesized that field manuring would change the stability of the microbial community. Additionally, the impact of both manured and unmanured soils to addition of an organic cocktail was assessed under controlled conditions in order to discriminate the metabolic capacity of the microbial community, and to link the metabolic capacity up with the microbial heterotrophic soil respiration. Our results show that total respiration was not significantly different in manured and unmanured pots. Moreover, contrary to our hypothesis, manure amendment did not affect the stability (resistance, resilience) of the microbial abundance or the basal metabolism, in our experimental conditions. By contrast, the diversity of the bacterial community in heated soils was different from that in unheated soils. After heating, surviving microorganisms showed different carbon utilization efficiency, manuring stimulating the growth of different resistant communities, that is, r-strategist or K-strategist. Microbial community of manured soils developed in the presence of the organic cocktail was less resistant to heating than microbial community of unmanured plots.  相似文献   

4.
The principal trophic levels, each subdivided into groups of organismic elements, are distinguished in the planktonic communities of the Eastern Equatorial and the Peruvian upwellings. Production intensity or metabolism have been determined experimentally for all elements. A scheme is suggested for computing production from data on metabolism for all the elements of a community, as well as for computing net and real production and other functional characteristics for definite trophic levels and the community as a whole. Based on the quantitative estimation of the efficiency of primary production and other functional characteristics, the development of communities is divided into production and destruction periods; they are, in turn, subdivided into steps associated with a certain degree of water trophicity. The balance of net production of the communities in the Peruvian upwelling indicates that the excess production of a community above the shelf is utilized completely in the narrow (100 to 150 sea miles) band of off-shore water. This paper describes an attempt to trace the changes taking place in the functional characteristics of plankton communities and to compare them with the changes observed in the communities of the Peruvian and East-Equatorial upwellings.  相似文献   

5.
The exchange of genetic information between coral reefs through the transport of larvae can be described in terms of networks that capture the linkages between distant populations. A key question arising from these networks is the determination of the highly connected modules (communities). Communities can be defined using genetic similarity or distance statistics between multiple samples but due to limited specimen sampling capacity the boundaries of the communities for the known coral reefs in the seascape remain unresolved. In this study we use the microsatellite composition of individual corals to compare sample populations using a genetic dissimilarity measure (FST) which is then used to create a complex network. This network involved sampling 1025 colonies from 22 collection sites and examining 10 microsatellites loci. The links between each sampling site were given a strength that was created from the pair wise FST values. The result is an undirected weighted network describing the genetic dissimilarity between each sampled population. From this network we then determined the community structure using a leading eigenvector algorithm within graph theory. However, given the relatively limited sampling conducted, the representation of the regional genetic structure was incomplete. To assist with defining the boundaries of the genetically based communities we also integrated the communities derived from a hydrodynamic and distance based networks. The hydrodynamic network, though more comprehensive, was of smaller spatial extent than our genetic sampling. A Bayesian Belief network was developed to integrate the overlapping communities. The results indicate the genetic population structure of the Great Barrier Reef and provide guidance on where future genetic sampling should take place to complete the genetic diversity mapping.  相似文献   

6.
The alvinellid Paralvinella grasslei is a common endemic polychaete from the deep-sea hydrothermal vent communities located on the East Pacific Rise (EPR). These organisms colonise a large range of microhabitats around active sites where physico-chemical conditions are thought to generate reactive oxygen species (ROS). Furthermore, in this aerobic organism, ROS could also be generated by the activity of the mitochondrial respiratory chain. In this paper, we investigated the effect of ambient oxygen concentration on the activities of three essential antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX) and their relationships with the activity of enzymes involved in aerobic metabolism (cytochrome c oxidase, COX; citrate synthase, CS). Results of incubation of P. grasslei in a high-pressure vessel with circulating seawater at different oxygen partial pressures indicate that this worm regulates COX and CS activities differently in gills and body wall. CAT and GPX activities increase in these tissues when animals are maintained in filtered surface seawater. Moreover, levels of malondialdehyde increase in gills, testifying that oxidative damage occurs under these conditions. CAT and GPX activities are positively related to COX and CS activities, but no correlation was detected between SOD and the metabolic enzyme activities. In comparison with littoral annelids, SOD activities are very high whereas CAT activities are very low or absent in P. grasslei. The possible reasons for the occurrence of such differences are discussed.  相似文献   

7.
Siepielski AM  McPeek MA 《Ecology》2010,91(11):3153-3164
A major challenge in ecology is to understand how the millions of species on Earth are organized into biological communities. Mechanisms promoting coexistence are one such class of organizing processes, which allow multiple species to persist in the same trophic level of a given web of species interactions. If some mechanism promotes the coexistence of two or more species, each species must be able to increase when it is rare and the others are at their typical abundances; this invasibility criterion is fundamental evidence for species coexistence regardless of the mechanism. In an attempt to evaluate the level of empirical support for coexistence mechanisms in nature, we surveyed the literature for empirical studies of coexistence at a local scale (i.e., species found living together in one place) to determine whether these studies satisfied the invasibility criterion. In our survey, only seven of 323 studies that drew conclusions about species coexistence evaluated invasibility in some way in either observational or experimental studies. In addition, only three other studies evaluated necessary but not sufficient conditions for invasibility (i.e., negative density dependence and a trade-off in performance that influences population regulation). These results indicate that, while species coexistence is a prevalent assumption for why species are able to live together in one place, critical empirical tests of this fundamental assumption of community structure are rarely performed. These tests are central to developing a more robust understanding of the relative contributions of both deterministic and stochastic processes structuring biological communities.  相似文献   

8.
Mangroves constitute highly productive ecosystems that export organic material to surrounding areas. They reach their northernmost distribution on the American Pacific coast in arid northwestern Mexico where they grow under sub-optimal conditions. Nevertheless, they maintain high litterfall rates with important ecological and economical implications. These mangroves are threatened by the region??s accelerated development and population growth. In order to explore and describe large-scale patterns in the production of organic material and to assess their importance in the productivity of coastal ecosystems, we performed a meta-analysis of studies that measured mangrove litterfall in northwestern Mexico. We found that litterfall is strongly associated with latitude, and that evaporation was negatively correlated with it. Additionally, we found high correlation between the presence of Rhizophora mangle and productivity, while the presence of Laguncularia racemosa, showed a less pronounced trend. Despite the harsh conditions, mangroves produce high amounts of organic matter, which is perhaps the most important service of mangroves in these coasts. Their capacity to produce organic matter contrasts with that of their surrounding ecosystems. Substantial reductions in their surface will have consequences for the exchange of energy at the land-sea transition, which will be detrimental for biological communities and human populations.  相似文献   

9.
For many species in seasonal environments, warmer springs associated with anthropogenic climate change are causing phenological changes. Within ecological communities, the timing of interactions among species may be altered if the species experience asymmetrical phenological shifts. We present a model that examines the consequences of changes in the relative timing of herbivory and pollination in a community of herbivores and pollinators that share a host plant. Our model suggests that phenological shifts can alter the abundances of these species and, in some cases, their population dynamics. If historical patterns of interactions in a community change and herbivores become active before pollinators, the community could see a reduction in pollinators and an increase in herbivores, while if pollinators become active before herbivores, there could be a loss of stable coexistence. Previous studies have warned of the potential for climate change to cause large phenological mismatches whereby species that depend on one another become so separated in time that they can no longer interact. Our results suggest that climate change-induced phenological shifts can have a major impact on communities even in cases where complete phenological mismatches do not occur.  相似文献   

10.
Background and aim Grassy field margins have a high relevance in agricultural landscapes regarding the preservation of typical arthropod communities, their biodiversity and the ecological system functions linked with it. The structure of terrestrial communities is affected by anthropogenic impairment, which can lead to the replacement of sensitive by more tolerant species. The negative influence of pesticides on fauna and flora as well as the associated functional aspects (ecological system functions) and the reduction of biodiversity are undisputed since longer for agrarian systems and can also be assumed for grassy field margins due to spray-drift. The case study presented here examined the effect of influences related to utilization on the plant and arthropod communities of grassy field margins. Reference sites, on which due to missing farming in the direct surrounding countryside no utilization influences on the communities were present, were compared to non-target sites, on which these influences could not be excluded. Sites in three German macrochores were examined: in the Jülicher Börde, at the northeastern edge of the Leipziger low lands and in the area Mainfranken near Würzburg, all of them intensely used agricultural landscapes. Beside the vegetation, the epigeic arthropod communities of carabid beetles, spiders, springtails, hymenopterans, hover flies and ladybirds as well as abiotic parameters were included in the analysis. The aim of the study was the development of a statistical exclusion procedure which is capable to quantify the amount of variation in field community data which can be attributed to isolated factors. Special attention was paid to non-observable utilization impacts like undocumented pesticide application. The extraction of patterns of residual variance allowed for the uncovering of masked effects on a scale below the obvious abundance pattern. Materials and methods The variability in the species composition was visualized with the help of non-metric multi-dimensional scaling (NMDS). Indicator species analysis revealed those species which could be recognized as statistically significant indicators for local conditions. The relationship between the species composition and the environmental factors was statistically modeled by canonical correspondence analysis. By variance partitioning it was possible to extract the variance portion which could be bound to a set of covariables. For the remaining residual variance it could not be excluded that this resulted from a pesticide influence. Results The analyses based on the ecological distance (Bray-Curtis) showed that the communities in references sites and non-target sites could be clearly distinguished in all three landscapes. Based on the portions of variance which could be explained statistically by a utilization related influence, two different directions of reaction to the utilization related variables could be stated. On the one hand there were sensitive species, showing reduced abundances in the non-target sites, on the other hand there were species increasing in abundance in the non-target sites, recruiting from the group of strong competitors. Discussion By the use of residual variances a clear influence of utilization related parameters on the community of soil arthropods and vegetation could be shown. The observed abundances shifts between reference sites and non-target sites in the raw data were attributed to a multi-dimensional factor complex which could be split up by the use of partial ordination methods, quantifying the relationships to the utilization related parameters. It was demonstrated that special utilization correlated patterns could be found in the raw data after eliminating the influence of the covariables. Conclusions Utilization related influences in the non-target sites evened out the characteristic communities for the three landscapes towards a comprehensive, ubiquitous species composition. The hypothesis of decreasing abundance of sensitive species and the augmentation of tolerant species due to a potential pesticide influence could be underpinned and quantified. Sensitive species which showed a significant reduction in abundance between reference and non-target sites showed a much higher sensitivity to the influences and thus were assigned a higher indicator potential than tolerant species. From the group of the sensitive species Pardosa palustris and Poecilus cupreus could be isolated as two promising macrochore-specific indicator species for the masked effects. Recommendations and perspectives A macrochore-specific assessment of utilization effects was requested for future studies due to the different sensitivities of the species in the three landscapes. The elaboration and specifying of reference conditions for terrestrial agrarian systems is an important task for the future. The presented approach deduces a macrochore-specific, complex effect pattern of anthropogenic impairment on terrestrial species communities. It can be used to extract masked effects and by this facilitates a more sustainable use of e.g. plant protection products. Furthermore it provides an opportunity to validate evaluation systems for the effects of utilization impacts on terrestrial vegetation and arthropods. Additionally the species sensitivities with respect to the macrochores allow a regionalized assessment of ecotoxicological effects and the integration into spatially explicit effect assessment models.  相似文献   

11.
Fishing has wide-ranging impacts on marine ecosystems. One of the most pervasive signs of intensive fishing is "fishing down the food web", with landings increasingly dominated by smaller species from lower trophic levels. Decreases in the trophic level of landings are assumed to reflect those in fish communities, because size-selective mortality causes decreases in the relative abundance of larger species and in mean body size within species. However, existing analyses of fishing impacts on the trophic level of fish communities have focused on the role of changes in species composition rather than size composition. This will provide a biased assessment of the magnitude of fishing impacts, because fishes feed at different trophic levels as they grow. Here, we combine body size versus trophic level relationships for North Sea fishes (trophic level assessed using nitrogen stable-isotope analysis) with species-size-abundance data from two time-series of trawl-survey data (whole North Sea 1982-2000, central and northern North Sea 1925-1996) to predict long-term trends in the trophic structure of the North Sea fish community. Analyses of the 1982-2000 time-series showed that there was a slow but progressive decline in the trophic level of the demersal community, while there was no trend in the trophic level of the combined pelagic and demersal community. Analyses of the longer time-series suggested that there was no trend in the trophic level of the demersal community. We related temporal changes in trophic level to temporal changes in the slopes of normalised biomass size-spectra (which theoretically represent the trophic structure of the community), mean log2 body mass and mean log2 maximum body mass. While the size-based metrics of community structure showed long-term trends that were consistent with the effects of increased fishery exploitation, these trends were only correlated with trophic level for the demersal community. Our analysis suggests that the effects of fishing on the trophic structure of fish communities can be much more complex than previously assumed. This is a consequence of sampled communities not reflecting all the pathways of energy transfer in a marine ecosystem and of the absence of historical data on temporal and spatial changes in the trophic level of individuals. For the North Sea fish community, changes in size structure due to the differential effects of fishing on species and populations with different life histories are a stronger and more universal indicator of fishing effects than changes in mean trophic level.  相似文献   

12.
Abstract:  Customary forms of resource management, such as taboos, have received considerable attention as a potential basis for conservation initiatives in the Indo-Pacific. Yet little is known about how socioeconomic factors influence the ability of communities to use customary management practices and whether socioeconomic transformations within communities will weaken conservation initiatives with a customary foundation. We used a comparative approach to examine how socioeconomic factors may influence whether communities use customary fisheries management in Papua New Guinea. We examined levels of material wealth (modernization), dependence on marine resources, population, and distance to market in 15 coastal communities. We compared these socioeconomic conditions in 5 communities that used a customary method of closing their fishing ground with 10 communities that did not use this type of management. There were apparent threshold levels of dependence on marine resources, modernization, distance to markets (<16.5 km), and population (>600 people) beyond which communities did not use customary fisheries closures. Nevertheless, economic inequality, rather than mean modernization levels seemed to influence the use of closures. Our results suggest that customary management institutions are not resilient to factors such as population growth and economic modernization. If customary management is to be used as a basis for modern conservation initiatives, cross-scale institutional arrangements such as networks and bridging organizations may be required to help filter the impacts of socioeconomic transformations.  相似文献   

13.
We present a cellular automaton that simulates the interaction between a host tree and multiple potential mycorrhizal symbionts and generates testable hypotheses of how processes at the scale of individual root tips may explain mycorrhizal community composition. Existing theoretical biological market models imply that a single host is able to interact with and select from multiple symbionts to organize an optimal symbiont community. When evaluating the tree–symbiont interaction, two scales must be considered simultaneously: the scale of the entire host plant at which carbon utilization and nutrient demands operate, and the scale of the individual root tip, at which colonization and carbon-nutrient trade occurs. Three strategies that may be employed by the host tree for optimizing carbon use and nutrient acquisition through mycorrhizal symbiont communities are simulated: (1) carbon pool adjustment, in which the plant controls only the total amount of carbon to be distributed uniformly throughout the root system, (2) symbiont selection, wherein the plant opts either for or against the interaction at each fine root tip, and (3) selective carbon allocation, wherein the plant adjusts the amount of carbon allocated to each root tip based on the cost of nutrients. Strategies were tested over various nutrient availabilities (the amount of inorganically and organically bound nutrients). Success was defined on the basis of minimizing carbon expended for nutrient acquisition because this would allow more carbon to be utilized for growth and reproduction. In all cases, the symbiont selection and selective carbon allocation strategies were able to meet the nutritional requirements of the plant, but did not necessarily optimize carbon use. The carbon pool adjustment strategy is the only strategy that does not operate at the individual root tip scale, and the strategy was not successful when inorganic nutrients were scarce since there is no mechanism to exclude suboptimal symbionts. The combination of the symbiont selection strategy and the carbon pool adjustment resulted in optimal carbon use and nutrient acquisition under all environmental conditions but result in monospecific symbiont assemblages. On the other hand, the selective carbon allocation strategy is the only strategy that maintained successful, multi-symbiont communities. The simulations presented here thus imply clear hypotheses about the effect of nutrient availability on symbiont selection and mycorrhizal community richness and composition.  相似文献   

14.
A 40% reduction in relative gonad size in perch (Perca fluviatilis) has been observed over that past two decades at the Swedish national reference site Kvädöfjärden. This biomarker response could be interpreted as a reduction in fecundity and increased risk of local extinction. However, abundance estimates from the same area has not provided any evidence of a reduction in population size. In the present study, a matrix population model was developed to investigate if a reduction in fecundity can be expected to have long term effects on population viability for perch and to evaluate the probability to detect such effects through abundance estimates. The model was parameterized from 17 years of population data from Kvädöfjärden as well as from other studies on perch. The model included density dependence and environmental stochasticity. The results indicated that a reduction in fecundity that is in level with the observed reduction in relative gonad size in Kvädöfjärden will cause a substantial risk for local extinction. The risk that the population will fall below 20% of the carrying capacity within 50 years is 44% when the fecundity is reduced by 40%. However, due to variability in abundance measurements it will take some time before a reduction in gonad size leads to statistically significant effects on the population. If the fecundity is reduced by 40% successively over a 10-year period, the probability to detect this through abundance estimates within 10 years is less than 50%. The results of the present study clearly show that relevant biomarkers have an important role in environmental monitoring as early warning signals, preferably in combination with measurements at higher levels of biological organization.  相似文献   

15.
The seasonal successions of standing crop and floral assemblage were studied for oceanic coccolithophores at 5 weather stations in the western North Atlantic Ocean. The coccolithophores were less populous during winter at the northern stations, whereas they became scarce during summer at the southern stations. The average standing crop in the surface water was quite consistent throughout all climatic regions, being a few tens of thousand cells per liter. The average standing crop at the 100 m level showed a clear trend of increasing southwards. The population at this depth was only one-tenth as large as that of the surface level at the northernmost station, whereas it was almost two-thirds as large as the surface levels at the southernmost station. Many of the major species exhibited seasonally biased occurrences. The trend was mostly repeated in consecutive years, although the magnitude of their abundances fluctuated from year to year in some case. The average species composition was obtained for the 5 weather stations at the surfacewater (surface and 20 m levels combined) and 100 m levels; Emiliania huxleyi dominated the flora at all stations. The relationship between occurrences of major species and ambient water temperature was also studied. Although some species were stenothermal, the majority exhibited eurythermal characteristics; this accounts for the high specific diversity of the coccolithophore community throughout the wide range of waters studied.Contribution No. 2899 of the Lamont-Doherty Geological Observatory of Columbia University.  相似文献   

16.
17.
18.
For marine macrobenthic communities, a shift from higher biomass dominance with increasing levels of disturbance can be determined by the abundance/biomass comparison (ABC) method. This response results from (i) a shift in the proportions of different phyla present in communities, some phyla having larger-bodied species than others, and (ii) a shift in the relative distributions of abundance and biomass among species within the Annelida (specifically Polychaeta) but not within any of the other major phyla (Mollusca, Crustacea, Echinodermata). The shift within polychaetes reflects the substitution of largerbodied by smaller-bodied species, and not a change in the average size of individuals within a species. In most instances the phyletic changes reinforce the trend in species substitutions within the polychaetes, to produce the overall ABC response, but in some cases they may work against each other. Indications of pollution or disturbance detected by this method should be viewed with caution if the species responsible for the polluted configurations are not polychaetes. These observations provide an aid to interpretation of the ABC plots, especially in some situations where they have been deemed to give a false impression of the disturbance status of a community.  相似文献   

19.
Acer catalpifolium Rehd., a critically endangered tree species with an extremely limited range of distribution, is one of the 120 plant species with extremely small populations, as approved by the state forestry administration of the People's Republic of China and requires urgent rescue action. In order to comprehensively understand the population status and the future developmental trend of A. catalpifolium, the plant communities were investigated from 5 sites, including Caishenmiao (CSM), Banruosi (BRS), Zhangshancun (ZSC), Fuhusi (FHS), and Baoguosi (BGS). The population structure of A. catalpifolium as well as the species composition and community characteristics of its habitat were investigated. The results showed that A. catalpifolium is mainly distributed in the evergreen broad-leaved and deciduous broad-leaved mixed forests, in different community layers, namely, the tree layer, shrub layer, and herb layer, and is accompanied by 52, 74, and 52 plant species, respectively. Analyses of the distribution of population abundance revealed that BRS had the largest distribution of A. catalpifolium, accounting for 26.04% of the total population, followed by FHS, ZSC, BGS, and CSM, in that order. Analyses of the community characteristics revealed that the species diversity indices in FHS, BRS, BGS, and CSM were greater than that in ZSC. Analyses of the population age structure of A. catalpifolium revealed the gap in the distribution of the levels of seedlings and young trees. There were serious obstacles to the regeneration of the natural population. We concluded that the obstacle to the regeneration of the population of A. catalpifolium might be caused by the high competitive pressure from the dominant species and the micro-environment in the forest. Understanding the community characteristics and the population structure of A. catalpifolium could provide a theoretical foundation for its reintroduction and recovery. © 2018 Science Press. All rights reserved.  相似文献   

20.
This paper is a test of two widely held assumptions in the practice of riparian restoration: (1) if physical processes are restored, plant communities will naturally reassemble themselves, and (2) restored communities will resemble reference sites. Seasonal flooding was restored to two interconnected floodplains in the Central Valley of California (USA), and plant community establishment was studied for six years at 300 permanent vegetation plots. If these two assumptions are valid, then the two floodplains should end up with similar plant assemblages, and they should both have followed a similar trajectory. Then, once the relevant physical processes are restored, (1) plots with similar environmental conditions should have increasingly similar species compositions, (2) plant communities should become more stable and cohesive, (3) both species distributions and plant communities should respond to changes in environmental conditions, (4) plot diversity should decrease, and (5) perennial species should replace annuals. The plots were classified into communities using TWINSPAN, and these communities differed significantly with respect to the main environmental gradient (inundation). Bray-Curtis similarities were calculated for each pair of plots. Patterns in similarity were used to test the strength of communities and the relative importance of proximity and inundation. On the northern floodplain, there was a trend of increasing similarity for plots with similar environmental conditions over the course of the study; plant communities became more stable and clearly responded to changes in environmental conditions. Plot diversity decreased, and the proportion of perennial species increased. On the southern floodplain, however, plots with similar environmental conditions became less similar, while plots that were close together became more similar; plant communities did not become more stable though they did shift in response to changes in environmental conditions. Taken together, this evidence suggests that assembly of communities is more stochastic than deterministic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号