首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The Ti-modified sepiolite (Ti-Sep)-supported Mn-Cu mixed oxide (yMn5Cu/Ti-Sep) catalysts were synthesized using the co-precipitation method. The materials were characterized by the X-ray diffraction scanning electron microscope, N2 adsorption-desorption, H2-TPR, O2-TPD, and XPS techniques, and their catalytic activities for CO oxidation were evaluated. It was found that the catalytic activities of yMn5Cu/Ti-Sep were higher than those of 5Cu/Ti-Sep and 30Mn/Ti-Sep, and the Mn/Cu molar ratio had a distinct influence on catalytic activity of the sample. Among the yMn5Cu/Ti- Sep samples, the 30Mn5Cu/Ti-Sep catalyst showed the best activity (which also outperformed the 30Mn5Cu/Sep catalyst), giving the highest reaction rate of 0.875 × 10–3 mmol·g–1·s–1 and the lowest T 50% and T 100% of 56°C and 86°C, respectively. Moreover, the 30Mn5Cu/Ti-Sep possessed the best low-temperature reducibility, the lowest O2 desorption temperature, and the highest surface Mn3+/Mn4+ atomic ratio. It is concluded that factors, such as the strong interaction between the copper or manganese oxides and the Ti-Sep support, good low-temperature reducibility, and good mobility of chemisorbed oxygen species, were responsible for the excellent catalytic activity of 30Mn5Cu/Ti-Sep.
  相似文献   

2.
Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In the same ash sample, the leaching concentrations of individual REEs determined by the Toxicity Characteristic Leaching Procedure (TCLP) were higher than those detected by the European standard protocol (EN-type test), thereby suggesting that the low pH value of leaching solution was an important factor influencing the leachability of REE. The REE bioaccessibility results, which were evaluated using the physiologically based extraction test (PBET), indicated that REEs were highly absorbed during gastric phase by dissolution; and subsequently precipitated and/or re-adsorbed in small intestinal phase. The relative amounts of the total REEs extracted by the TCLP method, EN-type test and PBET test were compared. In addition to the pH value of extraction solutions, the chelating role of REEs with organic ligands used in the PBET method was also an important parameter affecting REE adsorption in human body. Additionally, this study showed that REEs were extracted by these methods as concomitants of heavy metals and anions (NO3 , F, SO4 2–, and Cl) from HWI ash, which probably caused the remarkably complex toxicity on human body by the exposure pathway.
  相似文献   

3.
The gene for the catalytic domain of thermostable endo-β-1,3-glucanase (laminarinase) LamA was cloned from Thermotoga maritima MSB8 and heterologously expressed in a bioengineered Synechococcus sp. PCC 7002. The mutant strain was cultured in a photobioreactor to assess biomass yield, recombinant laminarinase activity, and CO2 uptake. The maximum enzyme activity was observed at a pH of 8.0 and a temperature of 70°C. At a CO2 concentration of 5%, we obtained a maximum specific growth rate of 0.083 h–1, a biomass productivity of 0.42 g?L–1?d–1, a biomass concentration of 3.697 g?L–1, and a specific enzyme activity of the mutant strain of 4.325 U?mg–1 dry mass. All parameters decreased as CO2 concentration increased from 5% to 10% and further to 15% CO2, except enzyme activity, which increased from 5% to 10% CO2. However, the mutant culture still grew at 15% CO2 concentration, as reflected by the biomass productivity (0.26 g?L–1?d–1), biomass concentration (2.416 g?L–1), and specific enzyme activity (3.247 U?mg–1 dry mass).
  相似文献   

4.
Conventional biological removal of nitrogen and phosphorus is usually limited due to the lack of biodegradable carbon source, therefore, new methods are needed. In this study, a new alternative consisting of enhanced biological phosphorus removal (EBPR) followed by partial nitritationanammox (PN/A), is proposed to enhance nutrients removal from municipal wastewater. Research was carried out in a laboratory-scale system of combined two sequencing batch reactors (SBRs). In SBR1, phosphorus removal was achieved under an alternating anaerobic-aerobic condition and ammonium concentration stayed the same since nitrifiers were washed out from the reactor under short sludge retention time of 2–3 d. The remaining ammonium was further treated in SBR2 where PN/A was established by inoculation. A maximum of nitrogen removal rate of 0.12 kg N?m–3?d–1 was finally achieved. During the stable period, effluent concentrations of total phosphorus and total nitrogen were 0.25 and 10.8 mg?L–1, respectively. This study suggests EBPR-PN/A process is feasible to enhance nutrients removal from municipal wastewater of low influent carbon source.
  相似文献   

5.
Denitrifying biofilter (DNBF) is widely used for advanced nitrogen removal in the reclaimed wastewater treatment plants (RWWTPs). Manual control of DNBF easily led to unstable process performance and high cost. Consequently, there is a need to automatic control of two decisive operational processes, carbon dosage and backwash, in DNBF. In this study, online control of DNBF was investigated in the pilot-scale DNBF (600 m3·d–1), and then applied in the full-scale DNBF (10 × 104 m3·d–1). A novel simple online control strategy for carbon dosage with the effluent nitrate as the sole control parameter was designed and tested in the pilot-scale DNBF. Backwash operation was optimized based on the backwash control strategy using turbidity as control parameter. Using the integrated control strategy, in the pilot-scale DNBF, highly efficient nitrate removal with effluent TN lower than 3 mg·L–1 was achieved and DNBF was not clogged any more. The online control strategy for carbon dosage was successfully applied in a RWWTP. Using the online control strategy, the effluent nitrate concentration was controlled relatively stable and carbon dosage was saved for 18%.
  相似文献   

6.
Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were employed to evaluate the Nitrous oxide (N2O) production in biological aerated filters (BAFs) under varied dissolved oxygen (DO) concentrations during treating wastewater under laboratory scale. The average yield of gasous N2O showed more than 4-fold increase when the DO levels were reduced from 6.0 to 2.0 mg?L–1, indicating that low DO may drive N2O generation. PCR-DGGE results revealed that Nitratifractor salsuginis were dominant and may be responsible for N2O emission from the BAFs system. While at a low DO concentration (2.0 mg?L–1), Flavobacterium urocaniciphilum might play a role. When DO concentration was the limiting factor (reduced from 6.0 to 2.0 mg?L–1) for nitrification, it reduced NO 2 - -N oxidation as well as the total nitrification. The data from this study contribute to explain how N2O production changes in response to DO concentration, and may be helpful for reduction of N2O through regulation of DO levels.
  相似文献   

7.
The effect of microwave pretreatment on the anaerobic degradation of hyacinth was investigated using response surface methodology (RSM). The components of lignin and the other constituents of hyacinth were altered by microwave pretreatment. Comparison of the near-infrared spectra of hyacinth pretreated by microwave irradiation and water-heating pretreatment revealed that no new compounds were generated during hyacinth pretreatment by microwave irradiation. Atomic force microscopy observations indicated that the physical structures of hyacinth were disrupted by microwave pretreatment. The yield of methane per gram of the microwave-irradiated substrate increased by 38.3% as compared to that of the substrate pretreated via water-heating. A maximum methane yield of 221 mL?g-sub–1 was obtained under the optimum pretreatment conditions (substrate concentration (PSC) = 20.1 g?L–1 and pretreatment time (PT) = 14.6 min) using RSM analysis. A maximum methane production rate of 0.76 mL?h–1?g-sub–1 was obtained by applying PSC = 9.5 g?L–1 and PT = 11 min. Interactive item coefficient analysis showed that methane production was dependent on the PSC and PT, separately, whereas the interactive effect of the PSC and PT on methane production was not significant. The same trend was also observed for the methane production rate.
  相似文献   

8.
Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K+, Na+, Ca2+, Mg2+ hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d–1) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K+, Ca2+ and Mg2+ and had a lower effluent Na+ concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.
  相似文献   

9.
Cadmium (Cd) and lead (Pb) in water and soil could be adsorbed by biochar produced from corn straw. Biochar pyrolyzed under 400°C for 2 h could reach the ideal removal efficiencies (99.24%and 98.62% for Cd and Pb, respectively) from water with the biochar dosage of 20 g·L–1 and initial concentration of 20 mg·L–1. The pH value of 4–7 was the optimal range for adsorption reaction. The adsorption mechanism was discussed on the basis of a range of characterizations, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and Raman analysis; it was concluded as surface complexation with active sorption sites (-OH, -COO-), coordination with π electrons (C = C, C = O) and precipitation with inorganic anions (OH-, CO3 2–, SO4 2–) for both Cd and Pb. The sorption isotherms fit Langmuir model better than Freundlich model, and the saturated sorption capacities for Cd and Pb were 38.91 mg·g-1 and 28.99 mg·g–1, respectively. When mixed with soil, biochar could effectively increase alkalinity and reduce bioavailability of heavy metals. Thus, biochar derived from corn straw would be a green material for both removal of heavy metals and amelioration of soil.
  相似文献   

10.
A novel microorganism embedding material was prepared to enhance the biological nitrogen removal through simultaneous nitrification and denitrification. Polyvinyl alcohol (PVA), sodium alginate (SA) and cyclodextrin (CD) were used to compose gel bead with embedded activated sludge. The effects of temperature, CD addition and concentrations of PVA and SA on nitrogen removal were evaluated. Results show that the gel bead with CD addition at 30°C contributed to the highest nitrogen removal efficiency and nitrogen removal rate of 85.4% and 2.08 mgL·(L·h)–1, respectively. Meanwhile, negligible NO3 and NO2 were observed, proving the occurrence of simultaneous nitrification and denitrification. The High-Throughput Sequencing confirms that the microbial community mainly contained Comamonadaceae in the proportion of 61.3%. Overall, CD increased gel bead’s porosity and resulted in the high specific endogenous respiration rate and high nitrogen removal efficiency, which is a favorable additional agent to the traditional embedding material.
  相似文献   

11.
The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L–1, SRF of the sludge decreased from 7.85 × 1012 m·kg–1 to 2.06 × 1012 m·kg–1, and the filter cake moisture decreased from 85% to 60%. The reconstruction of “floc mass” was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.
  相似文献   

12.
Characterization of the molecular properties of soluble microbial products (SMP) is critical for understanding the membrane filtration and fouling mechanisms in anaerobic and aerobic membrane bioreactors (AnMBR & MBR). In this study, the distributions of the absolute molecular weight and intrinsic viscosity of SMP polysaccharides from an AnMBR were effectively determined by a high performance size exclusion chromatography (HPSEC) that was coupled with the refractive index (RI), diode array UV (DAUV), right and low angle light scattering (LS), and viscometer (Vis) detectors. Based on the tetra-detector HPSEC determined absolute molecular weights and intrinsic viscosity, a universal calibration relationship for the SMP polysaccharides was developed and the molecular conformations, average molecular weights, and hydrodynamic sizes of the SMP polysaccharides were also explored. Two factors which can be derived from the tetra-detector HPSEC analysis were proposed for the characterization of the viscous and osmotic pressure properties of the SMP polysaccharides. In addition, it was also extrapolated how to analyze the resistance characteristics of the concentration polarization layers formed in membrane filtration based on the molecular properties determined by the tetra-detector HPSEC analysis.
  相似文献   

13.
It is common that 2,4,6-trichlorophenol (TCP) coexists with nitrate or nitrite in industrial wastewaters. In this work, simultaneous reductive dechlorination of TCP and denitrification of nitrate or nitrite competed for electron donor, which led to their mutual inhibition. All inhibitions could be relieved to a certain degree by augmenting an organic electron donor, but the impact of the added electron donor was strongest for TCP. For simultaneous reduction of TCP together with nitrate, TCP’s removal rate value increased 75% and 150%, respectively, when added glucose was increased from 0.4 mmol?L–1 to 0.5 mmol?L–1 and to 0.76 mmol?L–1. For comparison, the removal rate for nitrate increased by only 25% and 114% for the same added glucose. The relationship between their initial biodegradation rates versus their initial concentrations could be represented well with the Monod model, which quantified their half-maximum-rate concentration (K S value), and K S values for TCP, nitrate, and nitrite were larger with simultaneous reduction than independent reduction. The increases in K S are further evidence that competition for the electron donor led to mutual inhibition. For bioremediation of wastewater containing TCP and oxidized nitrogen, both reduction reactions should proceed more rapidly if the oxidized nitrogen is nitrite instead of nitrate and if readily biodegradable electron acceptor is augmented.
  相似文献   

14.
The toxic and recalcitrant polychlorinated biphenyls (PCBs) adversely affect human and biota by bioaccumulation and biomagnification through food chain. In this study, an anaerobic microcosm was developed to extensively dechlorinate hexa- and hepta-CBs in Aroclor 1260. After 4 months of incubation in defined mineral salts medium amended PCBs (70 mmol·L–1) and lactate (10 mmol·L–1), the culture dechlorinated hexa-CBs from 40.2% to 8.7% and hepta-CBs 33.6% to 11.6%, with dechlorination efficiencies of 78.3% and 65.5%, respectively (all in moL ratio). This dechlorination process led to tetra-CBs (46.4%) as the predominant dechlorination products, followed by penta-(22.1%) and tri-CBs (5.4%). The number of meta chlorines per biphenyl decreased from 2.50 to 1.41. Results of quantitative real-time PCR show that Dehalococcoides cells increased from 2.39 ×105±0.5 × 105 to 4.99 × 107±0.32 × 107 copies mL–1 after 120 days of incubation, suggesting that Dehalococcoides play a major role in reductive dechlorination of PCBs. This study could prove the feasibility of anaerobic reductive culture enrichment for the dehalogenation of highly chlorinated PCBs, which is prior to be applied for in situ bioremediation of notorious halogenated compounds.
  相似文献   

15.
The quantification and effects of system pH value on the interactions between Pb(II) and the biopolymer in activated sludge were investigated. The biopolymer had two protein-like fluorescence peaks (Ex/Em = 280 nm/326–338 nm for peak A; Ex/Em = 220–230 nm/324–338 nm for peak B). The fluorescence intensities of peak B were higher than those of peak A. The fluorophores of both peaks could be largely quenched by Pb(II), and the quencher dose for peak B was about half of that for peak A. The modified Stern-Volmer equation well depicted the fluorescence quenching titration. The quenching constant (Ka) values for both peaks decreased with rising system pH value, and then sharply decreased under alkaline conditions. It could be attributed to that the alkaline conditions caused the reduction of available Pb(II) due to the occurrence of Pb(OH)2 sediments. The Ka values of peak B were bigger than those for peak A at the same system pH values. Accordingly, the aromatic proteins (peak B) played a key role in the interactions between metal ions and the biopolymer.
  相似文献   

16.
Exploration of heavy metals and organic pollutants, their leaching capacity along with health and environmental risks in contaminated industrial construction and demolition waste (ICDW) within a pesticide manufacturing plant were investigated. A maximum content of 90.8 mg?kg–1 Cd was found present in the wastes, which might originate from phosphorus rocks and industrial sulfuric acid used in pesticide production processes. An average concentration of 979.8 mg?kg–1 dichlorovos and other 11 organophosphorus pesticide were also detected. Relatively high leaching rates of around 4.14‰were obtained from laboratory simulated ICDW using both glacial acetic acid-sodium hydroxide and deionized water. Pesticide pollutants had the strongest tendency to retaining on dry bricks (leaching rate 1.68‰) compared to mortar-coatings, etc. due to their different physical characteristics and octanol-water partioning coefficient. Mobility of pesticide from on-site ICDW by water was spatially correlated to waste types, process sections and human activities, with a flux of leaching rate between 5.9‰ to 27.4%. Risk-based corrective action (RBCA) model was used to simulate the risk of contaminated ICDW debris randomly scattered. Oral and dermal ingestion amount by local workers was 9.8 × 10–3 and 1.9 × 10–2 mg?(kg?d)–1, respectively. Potential leaching risk to aquatic systems exceeded the limit for nearly 75% waste. Environmental and health risk exceedance was found in most ICDW, while the risk value of the most severely contaminated brick waste was 660 times beyond critical level. Implications for waste management involving construction and deconstruction work, waste transferring and regulation supplying were also provided.
  相似文献   

17.
Negatively charged carboxymethylated polyethersulfone (CMPES) and positively charged quaternized polyethersulfone (QAPES) ultrafiltration (UF) membranes were prepared by bulk chemical modification and non-solvent induced phase separation method. The effects of PES membrane interfacial electrokinetic property on the bovine serum albumin (BSA) membrane fouling behavior were studied with the aid of the membrane-modified colloidal atomic force microscopy (AFM) probe. Electrokinetic test results indicated that the streaming potential (ΔE) of QAPES membrane was not consistent with its expected IEC value, however, within the pH range of 3–10, the ζ potentials of two charged-modified PES membranes were more stable than the unmodified membrane. When pH value was 3, 4.7 or 9, the interaction behavior between charged PES membrane and BSA showed that there was significant linear correlation between the jump distance r 0 of membrane-BSA adhesion force (F/R) and the ζ potential absolute value. Charged modification significantly reduced the adhesion of PES membrane-BSA, and the adhesion data was good linear correlated with the flux decline rate in BSA filtration process, especially reflected in the CMPES membrane. The above experimental facts proved that the charged membrane interfacial electric double layer structure and its electrokinetic property had strong ties with the protein membrane fouling behavior.
  相似文献   

18.
A biofilm membrane bioreactor (BF-MBR) and a conventional membrane bioreactor (MBR) were parallelly operated for treating digested piggery wastewater. The removal performance of COD, TN, NH4 +-N, TP as well as antibiotics were simultaneously studied when the hydraulic retention time (HRT) was gradually shortened from 9 d to 1 d and when the ratio of influent COD to TN was changed. The results showed that the effluent quality in both reactors was poor and unstable at an influent COD/TN ratio of 1.0±0.2. The effluent quality was significantly improved as the influent COD/TN ratio was increased to 2.3±0.5. The averaged removal rates of COD, NH4 +-N, TN and TP were 92.1%, 97.1%, 35.6% and 54.2%, respectively, in the BF-MBR, significantly higher than the corresponding values of 91.7%, 90.9%, 17.4% and 31.9% in the MBR. Analysis of 11 typical veterinary antibiotics (from the tetracycline, sulfonamide, quinolone, and macrolide families) revealed that the BF-MBR removed more antibiotics than the MBR. Although the antibiotics removal decreased with a shortened HRT, high antibiotics removals of 86.8%, 80.2% and 45.3% were observed in the BF-MBR at HRTof 5–4 d, 3–2 d and 1 d, respectively, while the corresponding values were only 83.8%, 57.0% and 25.5% in the MBR. Moreover, the BF-MBR showed a 15% higher retention rate of antibiotics and consumed 40% less alkalinity than the MBR. Results above suggest that the BF-MBR was more suitable for digested piggery wastewater treatment.
  相似文献   

19.
Waste pickling liquors (WPLs) containing high concentrations of iron and acid are hazardous waste products from the steel pickling processes. A novel combined coprecipitation–oxidation method for iron recovery by Fe3O4 nanoparticle production from the WPLs was developed in this study. An oxidation–reduction potential monitoring method was developed for real-time control of the Fe2+/Fe3+ molar ratio. The key coprecipitation–oxidation parameters were determined using the orthogonal experimental design method. The use of promoters greatly improved the Fe3O4 nanoparticle crystallinity, size, magnetization, and dispersion. X-ray diffraction patterns showed that the produced Fe3O4 nanoparticles were single phase. The Fe3O4 nanoparticles were approximately spherical and slightly agglomerated. Vibrating sample magnetometry showed that the Fe3O4 nanoparticles produced from the WPLs had good magnetic properties, with a saturation magnetization of 80.206 emu·g–1 and a remanence of 10.500 emu·g–1. The results show that this novel coprecipitation–oxidation method has great potential for recycling iron in WPLs.
  相似文献   

20.
A series of Co-La catalysts were prepared using the wet impregnation method and the synthesis of catalysts were modified by controlling pH with the addition of ammonium hydroxide or oxalic solution. All the catalysts were systematically investigated for NO oxidation and SO2 resistance in a fixed bed reactor and were characterized by Brunanuer–Emmett–Teller (BET) method, Fourier Transform infrared spectroscopy (FTIR), X–ray diffraction (XRD), Thermogravimetric (TG) and Ion Chromatography (IC). Among the catalysts, the one synthesized at pH = 1 exhibited the maximum NO conversion of 43% at 180°C. The activity of the catalyst was significantly suppressed by the existence of SO2 (300 ppm) at 220°C. Deactivation may have been associated with the generation of cobalt sulfate, and the SO2 adsorption quantity of the catalyst might also have effected sulfur resistance. In the case of the compact selective catalytic reduction (SCR), the activity increased from 74% to 91% at the highest gas hourly space velocity (GHSV) of 300000 h–1 when the NO catalyst maintained the highest activity, in excess of 50% more than that of the standard SCR.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号