首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Quinones are common organic compounds frequently used as model dissolved organic matters in water, and their redox properties are usually characterized by either electrochemical or spectroscopic methods separately. In this work, electrochemical methodology was combined with two fluorescence spectroelectrochemical techniques, cyclic volta- fluorescence spectrometry (CVF) and derivative cyclic volta- fluorescence spectrometry (DCVF), to determine the electrochemical properties of p-benzoquinone in dimethyl sulfoxide, an aprotic solution. The CVF results show that the electrochemical reduction of p-benzoquinone resulted in the formation of radical anion and dianion, which exhibited a lower fluorescence intensity and red-shift of the emission spectra compared to that of p-benzoquinone. The fluorescence intensity was found to vary along with the electrochemical oxidation and reduction of p-benzoquinone. The CVF and DCVF results were in good consistence. Thus, the combined method offers a powerful tool to investigate the electrochemical process of p-benzoquinone and other natural organic compounds.
  相似文献   

2.
Eutrophication with a large number of Microcystis aeruginosa commonly occurs worldwide, thereby threatening the aquatic ecosystem and human health. In this study, four kinds of algicides were tested to explore their influence on cell density and chlorophyll-a of M. aeruginosa. Results showed that aluminum silicate agent, which inhibited more than 90% cell growth compared with the control group, demonstrated the strongest inhibition effect immediately on M. aeruginosa growth. Furthermore, the production and release of microcystin (MC)-LR were investigated. Aluminum silicate, CuSO4, and Emma-11 were more effective than pyrogallic acid in disrupting the cells of M. aeruginosa, thereby increasing the extracellular MC-LR concentration. Aluminum silicate caused the highest extracellular MC-LR concentration of more than 45 mg·L–1. Biotoxicity was also detected to evaluate the environmental risks of MC-LR release, which were related to the usages of different algicides. Extracellular MC-LR concentration mostly increased when the biotoxicity of algae solution increased. The experiments were also designed to reveal the effects of physical conditions in riverways, such as natural sunlight, aeration and benthal sludge, on MC-LR degradation. These findings indicated that UV rays in sunlight, which can achieve a MC-LR removal efficiency of more than 15%, played an important role in MC-LR degradation. Among all the physical pathways of MC-LR removal, benthal sludge adsorption presented the optimal efficiency at 20%.
  相似文献   

3.
Chromium oxide and manganese oxide promoted ZrO2-CeO2 catalysts were prepared by a homogeneous precipitation method for the selective catalytic reduction of NO x with NH3. A series of characterization including X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), Brunauer–Emmett–Teller (BET) surface area analysis, H2 temperatureprogrammed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) were used to evaluate the influence of the physicochemical properties on NH3-SCR activity. Cr-Zr-Ce and Mn-Zr-Ce catalysts are much more active than ZrO2-CeO2 binary oxide for the low temperature NH3-SCR, mainly because of the high specific surface area, more surface oxygen species, improved reducibility derived from synergistic effect among different elements. Mn-Zr-Ce catalyst exhibited high tolerance to SO2 and H2O. Cr-Zr-Ce mixed oxide exhibited>80% NO x conversion at a wide temperature window of 100°C–300°C. In situ DRIFT studies showed that the addition of Cr is beneficial to the formation of Bronsted acid sites and prevents the formation of stable nitrate species because of the presence of Cr6 +. The present mixed oxide can be a candidate for the low temperature abatement of NO x .
  相似文献   

4.
When microalgae are simultaneously applied for wastewater treatment and lipid production, soluble algal products (SAP) should be paid much attention, as they are important precursors for formation of disinfection byproducts (DBPs), which have potential risks for human health. Chlorella sp. HQ is an oleaginous microalga that can generate SAP during growth, especially in the exponential phase. This study investigated the contribution of SAP from Chlorella sp. HQ to DBP formation after chlorination. The predominant DBP precursors from SAP were identified with the 3D excitation-emission matrix fluorescence. After chlorination, a significant reduction was observed in the fluorescence intensity of five specific fluorescence regions, particularly aromatic proteins and soluble microbial by-product-like regions, accompanied with slight shifting of the peak. The produced DBPs were demonstrated to include trihalomethanes and haloacetic acids. As the algal cultivation time was extended in wastewater, the accumulated SAP strengthened the formation of DBPs. The trend for DBP formation was as follows: chloroform>dichloroacetic acid>trichloroacetic acid.
  相似文献   

5.
The toxic and recalcitrant polychlorinated biphenyls (PCBs) adversely affect human and biota by bioaccumulation and biomagnification through food chain. In this study, an anaerobic microcosm was developed to extensively dechlorinate hexa- and hepta-CBs in Aroclor 1260. After 4 months of incubation in defined mineral salts medium amended PCBs (70 mmol·L–1) and lactate (10 mmol·L–1), the culture dechlorinated hexa-CBs from 40.2% to 8.7% and hepta-CBs 33.6% to 11.6%, with dechlorination efficiencies of 78.3% and 65.5%, respectively (all in moL ratio). This dechlorination process led to tetra-CBs (46.4%) as the predominant dechlorination products, followed by penta-(22.1%) and tri-CBs (5.4%). The number of meta chlorines per biphenyl decreased from 2.50 to 1.41. Results of quantitative real-time PCR show that Dehalococcoides cells increased from 2.39 ×105±0.5 × 105 to 4.99 × 107±0.32 × 107 copies mL–1 after 120 days of incubation, suggesting that Dehalococcoides play a major role in reductive dechlorination of PCBs. This study could prove the feasibility of anaerobic reductive culture enrichment for the dehalogenation of highly chlorinated PCBs, which is prior to be applied for in situ bioremediation of notorious halogenated compounds.
  相似文献   

6.
Flow cytometry (FCM) has been widely used in multi-parametric assessment of cells in various research fields, especially in environmental sciences. This study detected the metabolic activity of Escherichia coli and Staphylococcus aureus by using an FCM method based on 5-cyano-2,3-ditolyltetrazolium chloride (CTC); the accuracy of this method was enhanced by adding SYTO 9 and 10%R2A broth. The disinfection effects of chlorine, chloramine, and UV were subsequently evaluated by FCM methods. Chlorine demonstrated stronger and faster destructive effects on cytomembrane than chloramine, and nucleic acids decomposed afterwards. The metabolic activity of the bacteria persisted after the cytomembranewas damaged as detected using CTC. Low-pressure (LP) UV or medium-pressure (MP) UV treatments exerted no significant effects on membrane permeability. The metabolic activity of the bacteria decreased with increasing UV dosage, and MP-UV was a stronger inhibitor of metabolic activity than LP-UV. Furthermore, the membrane of Gram-positive S. aureus was more resistant to chlorine/chloramine than that of Gram-negative E. coli. In addition, S. aureus showed higher resistance to UV irradiation than E. coli.
  相似文献   

7.
The gene for the catalytic domain of thermostable endo-β-1,3-glucanase (laminarinase) LamA was cloned from Thermotoga maritima MSB8 and heterologously expressed in a bioengineered Synechococcus sp. PCC 7002. The mutant strain was cultured in a photobioreactor to assess biomass yield, recombinant laminarinase activity, and CO2 uptake. The maximum enzyme activity was observed at a pH of 8.0 and a temperature of 70°C. At a CO2 concentration of 5%, we obtained a maximum specific growth rate of 0.083 h–1, a biomass productivity of 0.42 g?L–1?d–1, a biomass concentration of 3.697 g?L–1, and a specific enzyme activity of the mutant strain of 4.325 U?mg–1 dry mass. All parameters decreased as CO2 concentration increased from 5% to 10% and further to 15% CO2, except enzyme activity, which increased from 5% to 10% CO2. However, the mutant culture still grew at 15% CO2 concentration, as reflected by the biomass productivity (0.26 g?L–1?d–1), biomass concentration (2.416 g?L–1), and specific enzyme activity (3.247 U?mg–1 dry mass).
  相似文献   

8.
It is common that 2,4,6-trichlorophenol (TCP) coexists with nitrate or nitrite in industrial wastewaters. In this work, simultaneous reductive dechlorination of TCP and denitrification of nitrate or nitrite competed for electron donor, which led to their mutual inhibition. All inhibitions could be relieved to a certain degree by augmenting an organic electron donor, but the impact of the added electron donor was strongest for TCP. For simultaneous reduction of TCP together with nitrate, TCP’s removal rate value increased 75% and 150%, respectively, when added glucose was increased from 0.4 mmol?L–1 to 0.5 mmol?L–1 and to 0.76 mmol?L–1. For comparison, the removal rate for nitrate increased by only 25% and 114% for the same added glucose. The relationship between their initial biodegradation rates versus their initial concentrations could be represented well with the Monod model, which quantified their half-maximum-rate concentration (K S value), and K S values for TCP, nitrate, and nitrite were larger with simultaneous reduction than independent reduction. The increases in K S are further evidence that competition for the electron donor led to mutual inhibition. For bioremediation of wastewater containing TCP and oxidized nitrogen, both reduction reactions should proceed more rapidly if the oxidized nitrogen is nitrite instead of nitrate and if readily biodegradable electron acceptor is augmented.
  相似文献   

9.
The quantification and effects of system pH value on the interactions between Pb(II) and the biopolymer in activated sludge were investigated. The biopolymer had two protein-like fluorescence peaks (Ex/Em = 280 nm/326–338 nm for peak A; Ex/Em = 220–230 nm/324–338 nm for peak B). The fluorescence intensities of peak B were higher than those of peak A. The fluorophores of both peaks could be largely quenched by Pb(II), and the quencher dose for peak B was about half of that for peak A. The modified Stern-Volmer equation well depicted the fluorescence quenching titration. The quenching constant (Ka) values for both peaks decreased with rising system pH value, and then sharply decreased under alkaline conditions. It could be attributed to that the alkaline conditions caused the reduction of available Pb(II) due to the occurrence of Pb(OH)2 sediments. The Ka values of peak B were bigger than those for peak A at the same system pH values. Accordingly, the aromatic proteins (peak B) played a key role in the interactions between metal ions and the biopolymer.
  相似文献   

10.
Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were employed to evaluate the Nitrous oxide (N2O) production in biological aerated filters (BAFs) under varied dissolved oxygen (DO) concentrations during treating wastewater under laboratory scale. The average yield of gasous N2O showed more than 4-fold increase when the DO levels were reduced from 6.0 to 2.0 mg?L–1, indicating that low DO may drive N2O generation. PCR-DGGE results revealed that Nitratifractor salsuginis were dominant and may be responsible for N2O emission from the BAFs system. While at a low DO concentration (2.0 mg?L–1), Flavobacterium urocaniciphilum might play a role. When DO concentration was the limiting factor (reduced from 6.0 to 2.0 mg?L–1) for nitrification, it reduced NO 2 - -N oxidation as well as the total nitrification. The data from this study contribute to explain how N2O production changes in response to DO concentration, and may be helpful for reduction of N2O through regulation of DO levels.
  相似文献   

11.
Mercury enrichment in response to elevated atmospheric mercury concentrations in the organs of rape (Brassica napus) was investigated using an open top chamber fumigation experiment and a soil mercury enriched cultivation experiment. Results indicate that the mercury concentration in leaves and stems showed a significant variation under different concentrations of mercury in atmospheric and soil experiments while the concentration of mercury in roots, seeds and seed coats showed no significant variation under different atmospheric mercury concentrations. Using the function relation established by the experiment, results for atmospheric mercury sources in rape field biomass showed that atmospheric sources accounted for at least 81.81%of mercury in rape leaves and 32.29% of mercury in the stems. Therefore, mercury in the aboveground biomass predominantly derives from the absorption of atmospheric mercury.
  相似文献   

12.
The Ti-modified sepiolite (Ti-Sep)-supported Mn-Cu mixed oxide (yMn5Cu/Ti-Sep) catalysts were synthesized using the co-precipitation method. The materials were characterized by the X-ray diffraction scanning electron microscope, N2 adsorption-desorption, H2-TPR, O2-TPD, and XPS techniques, and their catalytic activities for CO oxidation were evaluated. It was found that the catalytic activities of yMn5Cu/Ti-Sep were higher than those of 5Cu/Ti-Sep and 30Mn/Ti-Sep, and the Mn/Cu molar ratio had a distinct influence on catalytic activity of the sample. Among the yMn5Cu/Ti- Sep samples, the 30Mn5Cu/Ti-Sep catalyst showed the best activity (which also outperformed the 30Mn5Cu/Sep catalyst), giving the highest reaction rate of 0.875 × 10–3 mmol·g–1·s–1 and the lowest T 50% and T 100% of 56°C and 86°C, respectively. Moreover, the 30Mn5Cu/Ti-Sep possessed the best low-temperature reducibility, the lowest O2 desorption temperature, and the highest surface Mn3+/Mn4+ atomic ratio. It is concluded that factors, such as the strong interaction between the copper or manganese oxides and the Ti-Sep support, good low-temperature reducibility, and good mobility of chemisorbed oxygen species, were responsible for the excellent catalytic activity of 30Mn5Cu/Ti-Sep.
  相似文献   

13.
A novel microorganism embedding material was prepared to enhance the biological nitrogen removal through simultaneous nitrification and denitrification. Polyvinyl alcohol (PVA), sodium alginate (SA) and cyclodextrin (CD) were used to compose gel bead with embedded activated sludge. The effects of temperature, CD addition and concentrations of PVA and SA on nitrogen removal were evaluated. Results show that the gel bead with CD addition at 30°C contributed to the highest nitrogen removal efficiency and nitrogen removal rate of 85.4% and 2.08 mgL·(L·h)–1, respectively. Meanwhile, negligible NO3 and NO2 were observed, proving the occurrence of simultaneous nitrification and denitrification. The High-Throughput Sequencing confirms that the microbial community mainly contained Comamonadaceae in the proportion of 61.3%. Overall, CD increased gel bead’s porosity and resulted in the high specific endogenous respiration rate and high nitrogen removal efficiency, which is a favorable additional agent to the traditional embedding material.
  相似文献   

14.
This work investigates the effect of adding pentanol with biodiesel derived from cashew nut shell on its emissions characteristics is conducted in stationery diesel engine. The main purpose of this work is intended to reduce the emissions by fuelling biodiesel derived from cashew nut shell and the pentanol blends. Cashew nut shell biodiesel is prepared by transesterification process. Oxygenated additive used in the work is Pentanol. The experiment is conducted using four test fuels such as, biodiesel derived from cashew nut shell (CNSBD), a fuel containing 90% cashew nut shell biodiesel and 10% pentanol (CNSBD90P10), a fuel containing 80% cashew nut shell biodiesel and 20% pentanol (CNSBD80P20) and neat diesel. Experimental work concluded that by adding 10% of pentanol to cashew nut shell biodiesel 10.1%, 2.6%, 5.1%and 2.1%reduction in CO, HC, NO x and Smoke emissions were observed respectively. Further by fueling with these blends, no modifications in engines were required.
  相似文献   

15.
Bdellovibrio-and-like organisms (BALOs) are a group of ubiquitous and obligate predatory bacteria and commonly used as biocontrol agents. In this study, an efficient, environmental-friendly, and convenient BALOs encouraged municipal waste sludge biolysis pretreatment technique was developed and investigated for dewaterability enhancement of excess waste sludge. The indigenous predatory BALOs were successfully isolated from the sludge for biolysis treatment. Without any chemical addition or pH adjustment, the sludge specific resistance (SRF) and capillary suction time (CST) were significantly reduced by as high as 53.4% and 23.8%, respectively within 24 h’s treatment, which would further be lowered with the increase of BALOs input dosage. However, the continuous extension of reaction time would worsen the sludge dewaterability. The decreases of SRF and CST accompanied with the increases of sludge disintegration degree and soluble chemical oxygen demand, nitrogen, and phosphorus concentrations all emphasized the contributions of BALOs’ predation activities to sludge disturbance, cell lysis, and consequently the release of sludge intracellular water to finally effectively improve the sludge dewaterability and disposal efficiency.
  相似文献   

16.
In the present paper, a polymer inclusion membrane (PIM) containing polyvinyl chloride (PVC), and bis-(2-ethylhexyl) phosphate (D2EHPA) which was used as extracting agent was used for the recovery of In(III) ions in hydrochloric acid medium. The effects of carrier concentration, feed phase pH, strip phase HCl concentration, temperature on the transport, and the membrane’s stability and thickness were examined. And the conditions for the selective separation of In(III) and Cu(II) were optimized. The results showed that the transport of In(III) across PIM was consistent with the first order kinetics equation, and also it was controlled by both the diffusion of the metal complex in the membrane and the chemical reaction at the interface of the boundary layers. The transport flux (J 0) was inversely proportional to the membrane thickness, however, the transport stability improved as the membrane thickness increased. The transport flux of In(III) and Cu(II) was decreased by excessive acidity of feed phase and high concentration of Cl. The selectivity separation coefficient of In(III)/Cu(II) was up to 34.33 when the original concentration of both In(III) and Cu(II) was 80 mg?L–1 as well as the pH of the feed phase and the concentration of Cl in the adjusting context were0.6 and 0.5 mol?L–1, respectively.Within the range of pH = 1–3, the separation selectivity of In(III)/Cu(II) reached the peak in the case when the Cl concentration was 0.7 mol?L–1.
  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) often occur in oil-contaminated soil, coke wastewater and domestic sludge; however, associated PAH degraders in these environments are not clear. Here we evaluated phenanthrene degradation potential in the mixed samples of above environments, and obtained a methanogenic community with different microbial profile compared to those from sediments. Phenanthrene was efficiently degraded (1.26 mg/L/d) and nonstoichiometric amount of methane was produced simultaneously. 16S rRNA gene sequencing demonstrated that bacterial populations were mainly associated with Comamonadaceae Nocardiaceae and Thermodesulfobiaceae, and that methanogenic archaea groups were dominated by Methanobacterium and Methanothermobacter. Substances such as hexane, hexadecane, benzene and glucose showed the most positive effects on phenanthrene degradation. Substrate utilization tests indicated that this culture could not utilize other PAHs. These analyses could offer us some suggestions on the putative phenanthrene-degrading microbes in such environments, and might help us develop strategies for the removal of PAHs from contaminated soil and sludge.
  相似文献   

18.
The aim of this study is to analyze the effect of salinity on polycyclic aromatic hydrocarbons (PAHs) biodegradation, community structure and naphthalene dioxygenase gene (ndo) diversity of a halophilic bacterial consortium with the denaturing gradient gel electrophoresis (DGGE) approach. The consortium was developed from oil-contaminated saline soil after enrichment for six times, using phenanthrene as the substrate. The prominent species in the bacterial consortium at all salinities were identified as halophilic bacteria Halomonas, Alcanivorax, Marinobacter, Idiomarina, Martelella and uncultured bacteria. The predominant microbes gradually changed associating with the saline concentration fluctuations ranging from 0.1% to 25% (w/v). Two ndo alpha subunits were dominant at salinities ranging from 0.1% to 20%, while not been clearly detected at 25% salinity. Consistently, the biodegradation occurred at salinities ranging from 0.1% to 20%, while no at 25% salinity, suggesting the two ndo genes played an important role in the degradation. The phylogenetic analysis revealed that both of the two ndo alpha subunits were related to the classic nah-like gene from Pseudomonas stutzeri AN10 and Pseudomonas aeruginosa PaK1, while one with identity of about 82% and the other one with identity of 90% at amino acid sequence level. We concluded that salinity greatly affected halophilic bacterial community structure and also the functional genes which were more related to biodegradation.
  相似文献   

19.
Three acid-producing strains, AFB-1, AFB-2 and AFB-3, were isolated during this study, and their roles in anaerobic digestion of waste activated sludge (WAS) were evaluated. Data of 16S rRNA method showed that AFB-1 and AFB-2 were Bacillus coagulans, and AFB-3 was Escherichia coli. The removal in terms of volatile solids (VS) and total chemical oxygen demand (TCOD) was maximized at 42.7% and 44.7% by inoculating Bacillus coagulans AFB-1. Besides, the optimal inoculum concentration of Bacillus coagulans AFB-1 was 30% (v/v). Solubilization degree experiments indicated that solubilization ratios (SR) of WAS reached 20.8%±2.2%, 17.7%±1.48%, and 11.1%±1.53%. Volatile fatty acids (VFAs) concentrations and compositions were also explored with a gas chromatograph. The results showed that VFAs improved by 98.5%, 53.0% and 11.6% than those of the control, respectively. Biochemical methane potential (BMP) experiments revealed that biogas production increased by 90.7% and 75.3% when inoculating with Bacillus coagulans AFB-1 and AFB-2. These results confirmed that the isolated acid-producing bacteria, especially Bacillus coagulans, was a good candidate for anaerobic digestion of WAS.
  相似文献   

20.
Wet deposition scavenges particles and particle-associated bacteria from the air column, but the impact of raindrops on various surfaces on Earth causes emission of surface-associated bacteria into the air column. Thus, after rainfall, these two mechanisms are expected to cause changes in airborne bacterial community composition (BCC). In this study, aerosol samples were collected at a suburban site in Seoul, Korea before and after three heavy rainfall events in April, May, and July 2011. BCC was investigated by pyrosequencing the 16S rRNA gene in aerosol samples. Interestingly, the relative abundance of non-spore forming Actinobacteria operational taxonomic units (OTUs) was always higher in post-rain aerosol samples. In particular, the absolute and relative abundances of airborne Propionibacteriaceae always increased after rainfall, whereas those of airborne Firmicutes, including Carnobacteriaceae and Clostridiales, consistently decreased. Marine bacterial sequences, which were temporally important in aerosol samples, also decreased after rainfall events. Further, increases in pathogen-like sequences were often observed in post-rain air samples. Rainfall events seemed to affect airborne BCCs by the combined action of the two mechanisms, with potentially adverse effects on human and plant health.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号