首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
济南冬季大气重污染过程颗粒物组分变化特征   总被引:1,自引:0,他引:1  
为研究济南市冬季大气重污染过程的颗粒物化学组分特征,于2017年11月15日—12月30日在市监测站及跑马岭清洁对照点同步采集PM_(10)和PM_(2.5),并对其质量浓度、水溶性离子及碳组分进行分析,结果表明重污染过程中PM_(2.5)/PM_(10)质量浓度比均超过0.6.NO_3~-(硝酸盐)、SO_4~(2-)(硫酸盐)、NH_4~+(铵盐)、OC(有机碳)浓度及百分占比与颗粒物浓度同步增加,其中NO_3~-、SO_4~(2-)、NH_4~+、OC的浓度增加倍数远大于PM_(2.5)的浓度增加,重污染日市监测站NO_3~-、SO_4~(2-)、NH_4~+、OC质量浓度分别是非污染日的5.1倍、8.8倍、8.3倍、7.0倍,跑马岭重污染日NO_3~-、SO_4~(2-)、NH_4~+、OC质量浓度分别是非污染日的3.0倍、3.9倍、3.7倍、4.6倍;且SO_4~(2-)和NH_4~+质量百分占比涨幅比NO_3~-的大,说明重污染天气下SO_4~(2-)和NH_4~+对PM_(2.5)浓度增加的贡献更大.通过经验公式计算得出市监测站和跑马岭SOC质量浓度分别占OC的82.4%和92.3%,说明重污染期间SOC是OC主要组成部分.二次无机离子和二次有机碳是导致重污染的主因,表明在冬季重污染过程中,大气化学反应非常重要,这可能与空气静稳和湿度较大的气象条件、前体物的大量积累、液相非均相化学过程的加强紧密相关.重污染天气下需要重视NO_2对SO_2液相催化氧化作用,严格控制NO_2的排放.  相似文献   

2.
2015年9月至2016年7月在新疆独山子区采集大气PM_(2.5)样品,对所含的水溶性无机离子和大气气态污染物的季节性变化进行了分析.其结果表明,PM_(2.5)、SO_2、NO_2和O_3的年均浓度分别为70.04、19.36、4.50、83.06μg·m~(-3); PM_(2.5)、SO_2、NO_2的浓度均出现冬季最高,夏季最低的趋势,而O_3浓度在春、夏季节偏高,冬季偏低;总水溶性无机离子的季节变化特征为冬季(68.99μg·m~(-3))秋季(14.23μg·m~(-3))春季(10.31μg·m~(-3))夏季(5.06μg·m~(-3)),其中SO_2~(-4)、NO_3~-、NH_4~+为水溶性无机离子的主要组成部分,占到水溶性总离子质量浓度的70%以上.对硫氧化率(SOR)和氮氧化率(NOR)的估算表明,全年SOR的值均大于0.1,表明SO_2~(-4)主要来自大气二次转化.夏季NOR值远低于其它季节. SO_2~(-4)浓度和SOR在冬季出现较高值,可能是由于冬季取暖导致SO_2排放量增加,同时较高的相对湿度又促进了SO_2的非均相转化.受相对湿度的影响,NO_3~-在冬季主要以非均相反应的方式生成,在春、夏、秋的3个季节主要以均相反应的方式生成;当PM_(2.5)的质量浓度大于75μg·m~(-3)时,NO_3~-/SO_2~(-4)、NOR/SOR和NOR值均显著增加,表明独山子区的硝酸盐污染较为严重.  相似文献   

3.
为了评价清洁能源政策对济南市采暖季PM_(2.5)质量浓度及PM_(2.5)中水溶性离子的影响,于2016年11月—2017年3月(2016年采暖季)和2017年11月—2018年3月(2017年采暖季)济南市区清洁能源政策实施前后两个采暖季分别采集PM_(2.5)样品,采用离子色谱法得到了PM_(2.5)中的8种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、Na~+、K~+、Ca~(2+)、NH_4~+)的质量浓度,并对PM_(2.5)不同污染等级水溶性离子进行了变化分析。结果表明:(1)采用清洁能源后,济南市采暖季的污染等级从轻度污染变为良,PM_(2.5)日均质量浓度从98.34μg·m~(-3)降到83.48μg·m~(-3),达标率上升了15.42%;(2)8种水溶性离子的总质量浓度从90.78μg·m~(-3)降到了67.72μg·m~(-3),对比两年采暖季各离子的质量浓度发现,实施后除污染天K+和Na+的质量浓度有所增长外,其余离子质量浓度均比清洁能源使用前要低;(3)NO_3~-、SO_4~(2-)、NH_4~+(SNA)在水溶性离子中占比最高,能源政策实施后,SNA的质量浓度降低了12.32%-31.71%;实施后SO_4~(2-)的占比降低,NO_3~-占比升高,NO_3~-是最主要的二次污染离子;(4)两年采暖季的硫氧化率SOR、氮氧化率NOR值均大于0.1,说明NO_3~-、SO_4~(2-)主要来自于大气中NO_2和SO_2的二次转化,随着污染等级的升高,SOR和NOR基本呈现上升的趋势,尤其是在重度污染下,由于NO_2对SO_2的氧化反应起到很好的催化作用,SOR是清洁天的2倍;(5)采用清洁能源前后阴阳离子电荷当量(AE/CE)分别为0.76和0.96,PM_(2.5)整体从弱碱性恢复到中性。清洁能源的使用,有效降低了各水溶性离子的质量浓度,减小了PM_(2.5)质量浓度,改善了颗粒物的酸碱性,提高了采暖季环境空气质量。  相似文献   

4.
水溶性无机离子是PM_(2.5)的主要组分之一,对研究PM_(2.5)的物理化学性质,来源及其形成机理具有重要意义.本研究于2017年9月—2017年11月期间在贵阳城区采集了80个PM_(2.5)样品,并测定了8种水溶性离子浓度,探讨贵阳秋季PM_(2.5)水溶性离子组成特征及来源.结果表明贵阳秋季PM_(2.5)中无机离子的平均质量浓度为15.99μg·m~(-3),阴离子和阳离子的平均质量浓度分别为10. 90μg·m~(-3)、5. 09μg·m~(-3); SO_4~(2-)(8. 53±4.63μg·m~(-3))平均质量浓度最高,其次是NH_4~+(2.56±1.62μg·m~(-3))、NO_3~-(2.21±2.96μg·m~(-3))、Ca~(2+)(1.98±0.88μg·m~(-3)),最后依次是K~+(0.37±0.24μg·m~(-3))、Cl-(0.16±0.11μg·m~(-3))、Mg~(2+)(0.11±0.03μg·m~(-3))、Na~+(0.07±0.06μg·m~(-3)); NH_4~+、SO_4~(2-)、NO_3~-是主要水溶性离子,所占比例为83%; NO_3~-/SO_4~(2-)值平均为0.21±0.12,远小于1,说明贵阳秋季PM_(2.5)以固定源污染为主.相关性分析表明,PM_(2.5)中NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3的形式存在,Ca~(2+)与Mg~(2+)来源可能相同.结合富集系数分析NO_3~-、SO_4~(2-)、Ca~(2+)、K~+、Mg~(2+)基本都是来源于陆源贡献,NO_3~-、SO_4~(2-)是人为源,Ca~(2+)、K~+、Mg~(2+)是地壳源,此外Mg~(2+)还有一部分海源贡献.  相似文献   

5.
为深入研究北京市采暖季PM_(2.5)中水溶性离子的污染特征及其影响因素,利用大流量采样器结合石英滤膜采集了2016年11月15日—2016年12月31日期间北京市典型污染天的PM_(2.5)样品(19个),采用离子色谱法测定了其中的水溶性无机离子成分,收集了同期北京市的日均气象数据和海淀区日均PM_(2.5)数据。应用热力学平衡模型ISORROPIA-Ⅱ分析了PM_(2.5)样品的酸度值,Traj Stat软件分析气流的72 h后向轨迹,并采用潜在源贡献因子分析法(PSCF)定位了PM_(2.5)潜在污染源的位置,浓度权重轨迹分析(WCWT)法定量解析了潜在污染源对北京PM_(2.5)质量浓度贡献的大小。结果表明:(1)PM_(2.5)的日均质量浓度变化范围为7.6~383μg·m~(-3),均值为114μg·m~(-3),污染天是清洁天的4.4倍;(2)10种水溶性离子的总质量浓度均值为44.61μg·m~(-3),SNA(NO_3~-、SO_4~(2-)、NH_4~+)占总水溶性离子的81.37%,污染天NO_3~-、SO_4~(2-)、NH_4~+质量浓度均值分别为20.35、16.16、8.68μg·m~(-3),分别是清洁天的4.7、3.5、3.6倍;(3)污染天PM_(2.5)酸性比清洁天强,污染天NH_4~+的存在形式主要是(NH_4)_2SO_4、NH_4HSO_4,清洁天NH_4~+的存在形式主要是(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3;(4)北京PM_(2.5)及其水溶性离子的污染除受本地污染源影响,还受河北省中部和南部以及内蒙古中部等区域传输的影响;(5)在北京采暖季低大气边界层以及三面环山的特殊条件下,风速和相对湿度是影响北京PM_(2.5)及其水溶性离子污染特征的2个主要气象因素,高湿度低风速的静稳天气条件可以造成以本地污染物为主的大气重污染,此外,一定范围内的低风速可以使周边地区高浓度的污染物传输至北京,加重大气污染。  相似文献   

6.
为探索北京城区大气细颗粒物浓度水平及其碳组分和二次水溶性无机离子的浓度特征,于2014年6月1日至7月15日在车公庄地区使用微量振荡天平(TEOM+FDMS)、EC/OC在线分析仪以及水溶性离子在线分析仪对PM_(2.5)质量浓度及其主要化学组分(OC、EC、SO_4~(2-)、NO_3~-和NH_4~+)进行了实时监测.研究结果表明,北京市城区夏季PM_(2.5)质量浓度平均值为69.0±47.9μg·m-3,PM_(2.5)中OC、EC、SO_4~(2-)、NO_3~-和NH_4~+所占的比例分别为15.8%、2.4%、23.0%、15.7%和19.2%,SNA(SO_4~(2-)、NO_3~-和NH_4~+)合计达到了PM_(2.5)质量浓度的57.9%.研究各组分的日变化特征发现,OC和SO_4~(2-)白天浓度变化较小,夜晚浓度稍高;NO_3~-和NH_4~+则随着光照和温度的增加而逐渐降低;EC呈现出夜晚浓度高白天浓度低的特点.研究各组分的相关性及比值发现,OC和EC的相关系数为0.62,OC/EC大于2.0,说明北京城区夏季存在着较为严重的二次污染;此外,NO_3~-/SO_4~(2-)平均比值为0.68,SOR和NOR的变化趋势基本一致,两者的平均值分别为0.55和0.14.通过分析北京市城区夏季不同浓度级别各组分的变化发现,随着PM_(2.5)质量浓度的增加,OC和EC所占的比例不断降低,而SNA比例则不断升高,其中NO_3~-浓度水平的增加最为显著.  相似文献   

7.
张毅 《环境化学》2020,39(6):1699-1708
采集了2017—2018年秋冬季长治市审计局站、监测站、清华站等3个监测站点的大气PM_(2.5)样品,分析了其元素、水溶性离子及碳质组分特征,并利用化学质量平衡模型(CMB)对PM_(2.5)进行来源解析.结果表明,采样期间长治市PM_(2.5)浓度为67.9μg·m~(-3),其中审计局站PM_(2.5)浓度最高(70.6μg·m~(-3)),其次为监测站(70.0μg·m~(-3))和清华站(63.0μg·m~(-3));二次无机离子(SO_4~(2-)、NO~-_3、NH~+_4)平均浓度(20.7μg·m~(-3))占PM_(2.5)浓度的30.5%,与大量排放到大气中的SO_2、NO_2二次生成有关;OC(12.6μg·m~(-3))和EC(6.6μg·m~(-3))分别占PM_(2.5)的18.6%和9.7%;OC/EC为2.06,且SOC(5.9μg·m~(-3))在OC中占比高达63.1%,表明长治市秋冬季二次污染较重;典型地壳元素Si和Ca占元素组分平均浓度的29.8%和22.8%,说明扬尘污染对长治市PM_(2.5)的有一定影响;源解析结果表明,长治市秋冬季PM_(2.5)主要来源为:机动车源17.0%、燃煤源16.5%、扬尘源14.6%、二次硝酸盐13.9%、二次硫酸盐11.0%、二次有机气溶胶10.8%、工艺过程源9.3%、生物质燃烧源1.9%、其他源5.0%.因此,为进一步降低长治市环境空气中PM_(2.5)的污染,需在加强管控机动车,燃煤和扬尘等一次排放源的基础上,降低一次污染物SO_2、NO_2等的排放,从而实现对二次污染源前体物的控制.  相似文献   

8.
为全面了解南方典型工业城市郴州市的大气细颗粒物(PM_(2.5))中水溶性离子污染特征及其来源,本研究利用离子色谱对从2016年4月到2017年1月间郴州市6个采样点的PM_(2.5)样品中的9种水溶性离子(SO_4~(2-)、NH_4~+、NO_3~-、Ca~(2+)、Cl~-、Na~+、K~+、F~-、Mg~(2+))进行分析.研究表明:郴州市的PM_(2.5)浓度范围为23. 3—66.5μg·m~(-3),呈现秋冬高,春夏低的特点.研究区域的水溶性离子质量浓度的变化趋势与PM_(2.5)变化趋势相类似; NO_3~-、SO_4~(2-)、NH_4~+和K~+与PM_(2.5)相关性较好,其中SNA(SO_4~(2-)、NH_4~+、NO_3~-)占PM_(2.5)的比重最高,为18.9%—40.2%.SNA三角图解表明NH_4~+的主要存在形式为(NH_4)_2SO_4,AE/CE均小于1,因此研究区域的PM_(2.5)呈碱性.通过主成分分析可知研究区域的水溶性离子污染来源主要为燃煤、交通、生物质燃烧等燃烧综合源,[NO_3~-]/[SO_4~(2-)]证明该区域的大气污染属于煤烟型污染.  相似文献   

9.
为系统反映太原市春季PM_(2.5)中无机水溶性离子的特征,采用在线气体/气溶胶监测仪(Marga)分析了太原市2016年3月1日至5月31日期间PM_(2.5)中无机水溶性离子的变化情况,研究表明二次离子(SO_4~(2-)、NO_3~-、NH_4~+)是无机水溶性离子的主要组成部分,它们在监测期间的均值分别为13.7μg·m~(-3)、14.7μg·m~(-3)以及10.4μg·m~(-3),整个观测期间三者的浓度之和(SNA)占总无机水溶性离子值的百分数为81.0%,占PM_(2.5)百分数为68.5%.三者浓度的日变化特征均呈单峰的形式存在,NO_3~-变化略有不同.热力学研究表明,由于NH_4NO_3分解平衡常数(Ke)与观测期间NH_3与HNO_3的浓度积(Km)的不同,导致了不同监测期间NO-3浓度变化不一致.观测期间硫氧化率(SOR)和氮氧化率(NOR)的值都大于0.1,说明太原市大气气溶胶中硫酸盐和硝酸盐主要都是经过转化形成的二次污染物.在典型空气污染过程中,SO_4~(2-)、NO_3~-、NH+4与能见度、相对湿度的变化有很好的对应关系,说明太原市低能见度与二次离子的生成有关.  相似文献   

10.
为了解南京地区重度污染下PM_(2.5)污染特征及其对消光的影响,于2013年12月5日至12月15日在南京北郊进行了PM_(2.5)采样分析,利用离子色谱分析了其中SO_4~(2-)、NO_3~-、NH_4~+、Cl~-、Na~+、K~+、Mg~(2+)和Ca~(2+)的含量,采用扫描电迁移率粒径谱仪(SMPS)测量细粒子的粒径谱分布,运用Model 2001A热/光碳分析仪对PM_(2.5)中OC、EC进行了分析,同时采用三波长光声黑碳光度计(PASS-3)实时在线测量细粒子的吸收和散射系数,并同步获得了痕量气体SO_2、NO_x浓度.结果表明,观测期间PM_(2.5)平均浓度为161.8±51.2μg·m~(-3),主要的水溶性无机离子为SO_4~(2-)、NO_3~-和NH_4~+;气溶胶在532 nm处平均吸收、散射系数分别为98.00±42.91 MmPM_(2.5)、630.00±308.52 MmPM_(2.5).(NH_4)_2SO_4和OM是南京北郊冬季大气气溶胶中的主要消光物质,积聚模态颗粒物体积浓度和表面积浓度与总消光系数呈较好的正相关,与能见度则呈明显的负相关.重度污染期间SOR、NOR平均值分别是轻度污染期间的1.26倍和1.81倍.除较低风速条件下污染物的物理积聚,较高的相对湿度条件下污染物的二次转化是造成此次重度污染的主要原因.  相似文献   

11.
为探究太原市采暖季PM_(2.5)水溶性无机离子组成及其来源,于2017年11月至2018年3月在太原城区连续采集大气颗粒物PM_(2.5)样品共151个,并于离子色谱仪中分析样品的9种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+).结果表明,太原市采暖季PM_(2.5)质量浓度的平均值为77.89±47.16μg·m~(-3),总水溶性无机离子质量浓度平均值为53.21±29.76μg·m~(-3),占PM_(2.5)的68.3%±23.3%,其中SO_4~(2-)、NO_3~-和NH_4~+是PM_(2.5)中最主要的离子成分,NH_4~+在PM_(2.5)中主要以NH_4NO_3、(NH_4)_2SO_4与NH_4Cl等形式存在,NH_4~+、NO_3~-、K~+、SO_4~(2-)和Cl~-等5种离子的爆发性增长对灰霾天污染贡献最大.随着气温回升,硫氧化率和氮氧化率均有一定程度的升高,大气中存在明显的气溶胶二次转化过程.主成分分析表明,燃煤源和二次污染源是太原市采暖季灰霾期间的主要污染源,土壤扬尘为清洁天的首要污染源,大气污染以固定污染源为主,移动污染源为辅.后向轨迹模型显示,采暖季期间气团基本上来自本地和西北方向的内陆排放源.  相似文献   

12.
为了探讨兰州市大气细颗粒物中水溶性无机组分的污染特征及来源,采集了2012年冬季和2013年夏季PM_(2.5)样品共40个,并利用离子色谱法对其中的无机离子进行了分析.分析结果显示,兰州市PM_(2.5)中无机离子冬季平均值为39.59μg·m~(-3),夏季平均值为10.71μg·m-3,冬季污染程度远高于夏季,SO_4~(2-)、NH_4~+和NO_3~-是3种最主要的水溶性离子;阴阳离子当量回归分析表明,冬季兰州PM2.5组分偏酸性,夏季偏碱性,离子间的结合方式主要以NH_4NO_3、(NH_4)_2SO_4、NH_4HSO_4和NH_4Cl的形式为主,冬季还有少量KNO_3、NaNO_3、K_2SO_4、Na_2SO_4、KCl和Na Cl存在;[NO_3~-]-/[SO_4~(2-)]比值的均值冬季为0.58±0.22,夏季为0.49±0.20,说明兰州市的冬季大气污染虽然呈现燃煤源等固定源和机动车尾气等流动源并存的复合污染类型,但仍然以煤烟型污染为主,而夏季NO_3~-受高温条件影响比较大,机动车尾气污染仍需引起重视.  相似文献   

13.
大气细颗粒物PM_(2.5)是危害人体健康和环境最主要的空气污染物之一,对其水溶性离子的研究是一项非常必要而迫切的工作。文章对乌鲁木齐市中心区域树木年轮实验室和黑山头2013年1月-2014年2月期间采集的大气细颗粒物样品,利用离子色谱仪分析了其中的水溶性离子分布特征,采用硫转化率(SOR)、离子相关性分析等分析其可能来源,结果表明:年轮室和黑山头PM_(2.5)中总离子浓度平均值分别为88.03和65.11μg·m~(-3),分别占PM_(2.5)质量浓度的51.21%和33.8%。年轮室各种离子的季节变化明显:SO_4~(2-)、NO_3~-、Cl~-和NH_4~+表现为冬季秋季春季夏季,Na~+表现为冬季秋季夏季春季,Ca~(2+)表现为秋季夏季春季冬季。SO_4~(2-)、NO_3~-和NH_4~+是PM_(2.5)中主要的离子,(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3是乌鲁木齐PM_(2.5)中水溶性组分的可能结合方式。Cl~-和K~+主要来源于化石燃料和生物质的燃烧排放,Ca~(2+)和Mg~(2+)主要来自土壤、二次扬尘和燃煤。乌鲁木齐大气PM_(2.5)中ρ(NO_3~-)/ρ(SO_4~(2-))为0.40,说明目前固定排放源仍然是乌鲁木齐大气污染物的主要来源。本研究为更深入了解乌鲁木齐市颗粒物污染现状提供参考,同时为确定乌鲁木齐市大气污染治理重点、制定大气污染防治规划提供依据。  相似文献   

14.
2017年1月—12月期间在四川省宜宾市布置4个点位,共采集360个PM_(2.5)样品膜,采用美国沙漠研究所DRI Model 2001型热光分析仪测定PM_(2.5)样品中OC、EC的浓度值,应用OC/EC比值法对SOC进行了估算.结果表明,宜宾市PM_(2.5)年均浓度为75.2μg·m~(-3).OC、EC年均浓度分别为14.3μg·m~(-3)和4.30μg·m~(-3),季节变化趋势为冬季秋季春季夏季,OC占PM_(2.5)比例为19.0%,为PM_(2.5)重要组成部分.SOC年均浓度为4.70μg·m~(-3),对OC贡献较大,在OC中占比为29.3%;SOC在OC中的占比春季冬季≈秋季夏季.进一步对OC1、OC2、OC3、OC4、EC1、EC2、EC3、和OPC进行主成分分析,结果表明机动车尾气、燃煤排放和生物质燃烧是宜宾市PM_(2.5)中OC和EC的主要贡献源,可贡献PM_(2.5)中碳组分的54.0%—69.0%.  相似文献   

15.
2015年12月21日—2016年2月29日在南京北郊进行了大气细颗粒物PM_(2.5)的观测,并分析其中主要水溶性离子(Na~+、NH_4~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-))浓度以及碳质组分(OC、EC)含量.结果表明,观测期间南京北郊冬季大气细颗粒物(PM_(2.5))污染较为严重,二次离子(NO_3~-+SO_4~(2-)+NH_4~+)为主要污染成分,占PM_(2.5)浓度的47%.对36个观测日进行SO_4~(2-)-NO_3~--NH_4~+三相聚类,发现3种离子在整个体系中的配比存在差异.排放源类型所造成的前体物的不同以及NH_4~+与SO_4~(2-)、NO_3~-的结合方式是造成这种差异的主要原因.OC与EC的变化趋势相似,OC含量较高,而且浓度波动幅度较大.OC/EC的值为2.63±0.90,说明普遍存在二次反应产生的SOC.K+/PM_(2.5)比值法表明,除燃煤与机动车尾气排放以外,生物质燃烧亦是PM_(2.5)污染的排放源.  相似文献   

16.
为分析菏泽市大气颗粒物及其水溶性离子组分特征,本研究于2015年8月期间在菏泽市6个监测点位采集环境受体PM_(10)和PM_(2.5)样品共120个,利用离子色谱法测定颗粒物中水溶性无机离子(SO■、NO~-_3、NH~+_4、Cl~-、Ca~(2+)、K~+、Na~+、Mg~(2+)、F~-),并同步收集气象参数及气态污染物质量浓度等资料.结果表明,菏泽市夏季环境受体中颗粒物质量浓度ρ(PM_(10))和ρ(PM_(2.5))分别为94.5μg·m~(-3)、55.2μg·m~(-3),稍低于国内其他城市,这与各城市经济发展、产业能源结构、气象条件等因素有关.PM_(2.5)/PM_(10)值在0.5—0.8之间,表明菏泽市夏季细颗粒物(PM_(2.5))污染较为严重.但PM_(10)和PM_(2.5)中水溶性离子质量总浓度ρ(WSIs)分别为30.5μg·m~(-3)、17.0μg·m~(-3);质量分数w(WSIs)分别为32.4%、29.6%.其中SO■、NO~-_3、NH~+_4为PM_(10)和PM_(2.5)中主要水溶性离子,3种离子浓度和分别占PM_(10)和PM_(2.5)中总离子浓度的84.3%、88.3%.SO■、NO~-_3、NH~+_4、K~+主要集中在细颗粒物(PM_(2.5))中,Ca~(2+)、Mg~(2+)则广泛存在于粗颗粒物(PM_(10))中.各采样点的PM_(10)和PM_(2.5)中,SO■、NO~-_3、NH~+_4、Ca~(2+)和Mg~(2+)浓度分布具有空间差异.离子相关性表明,NH~+_4与SO■、NO~-_3相关性均较强,3种离子主要以NH_4HSO_4、NH_4NO_3形式存在.PM_(10)和PM_(2.5)中NO~-_3/SO■值分别在0.41—0.49和0.36—0.47之间,平均值分别为0.46、0.42,表明固定源是菏泽市夏季颗粒物污染的主要污染贡献源.  相似文献   

17.
二次无机离子是PM_(2.5)的重要组成部分,明晰大气污染过程中二次无机离子的形成、演化过程及影响因素,对深入认识大气污染的形成与消散机制具有重要意义。利用南京北郊2016年3月—2017年2月PM_(2.5)及水溶性离子在线观测资料,分析了温湿度对南京北郊PM_(2.5)中二次无机离子生成和演化过程的影响。结果表明:观测期间南京北郊总水溶性离子(TWSI)平均质量浓度为41.35μg·m~(-3),占PM_(2.5)的69.94%;二次无机离子SO_4~(2-)、NO_3~-、NH_4~+(SNA)的平均质量浓度为37.95μg·m~(-3),占TWSI的91.78%,是最主要的水溶性离子。硫氧化率(SOR)平均约为0.49,季节性差异较小,随相对湿度(RH)的增大而升高,且在RH60%时升高显著。冬季SO4~(2-)质量浓度在PM_(2.5)中的占比随RH增加呈递增趋势,夏季反之,这可能与NO3-的占比增加有关。n(NH4+)/n(SO4~(2-))与n(NO3-)/n(SO4~(2-))比值的截距表现为冬季大于夏季,表明南京北郊大气中的硫酸盐主要是以低酸度固态或液态(NH_4)_2SO_4、NH_4HSO_4的形式存在。在气温高于25℃时,NO_3~-的气粒分配指数(FHNO_3)随气温上升而快速增大,表明气温越高,越有利于固态NH_4NO_3向气态HNO_3转化;而空气湿度的作用与气温相反,特别是在气温高于25℃的高温时段,空气湿度越低,越有利于固态NH_4NO_3向气态HNO_3转化。干净天气条件下FHNO_3平均值为0.07,是污染天气条件下的1.94倍,表明污染天气更有利于NH_4NO_3的形成从而加重大气污染程度。  相似文献   

18.
于2015年1月至11月在广州利用大流量大气颗粒物采样器采集细颗粒物(PM_(2.5))样品,并利用热光反射法(TOR)测定大气颗粒物中有机碳(OC)和元素碳(EC)浓度。结果表明,广州ρ(PM_(2.5))年均值为(69.5±35.6)μg·m~(-3),是GB 3095—2012《环境空气质量标准》中PM_(2.5)年均质量浓度二级标准限值(35μg·m~(-3))的2.0倍,表明广州大气细颗粒物污染严重。OC、EC和总碳气溶胶(TCA)的年均质量浓度分别为(8.31±4.53)、(3.56±2.72)和(16.85±9.60)μg·m~(-3),分别占PM_(2.5)质量浓度的13.2%、5.9%和27.0%,表明含碳组分是PM_(2.5)的重要组成部分。OC和EC浓度季节变化规律存在差异性,OC浓度在冬季最高,而EC浓度在秋季最高。OC和EC的相关性弱和比值高的特征结果表明冬季二次有机碳(SOC)污染最严重,其平均质量浓度为6.9μg·m~(-3),占OC质量浓度的62.4%。主成分分析结果表明,冬季和春季广州PM_(2.5)中碳组分来源较复杂,主要包括机动车尾气、燃煤和生物质燃烧,夏季碳组分的主导污染来源是燃煤和机动车尾气,而秋季碳组分主要来源于机动车尾气。  相似文献   

19.
大气细颗粒物(PM_(2.5))与雾霾天气密切相关,PM_(2.5)吸附的有毒有害物质,可能给人体健康带来危害。二次水溶性无机离子(SNA,包括SO_4~(2-)、NO_3~-和NH_4~+)是PM_(2.5)的重要组分,研究PM_(2.5)中SNA污染特征及形成和演化的影响因素,对认识雾霾污染的生消机制,提升人们的生活质量具有重要意义。利用在线气体及气溶胶成分监测系统(MARGA)观测了宁波市滨海地区春季、夏季和秋季大气PM_(2.5)中的SNA和气态污染物的变化趋势,并利用后向轨迹分析研究了不同气团影响下污染物的日变化规律。结果表明,观测期间,SNA在PM_(2.5)中的平均占比约为70.7%,NO_3~-是导致PM_(2.5)污染加重的主导离子。NO_3~-和SO_4~(2-)受气团传输影响较大,来自陆地气团的质量浓度普遍高于海洋气团,来自西北内陆方向的污染物输送是导致宁波空气质量下降的主要原因。宁波大气中的硫氧化率(SOR)较高,SO_4~(2-)主要由SO_2发生二次氧化反应生成;SO_4~(2-)的形成与相对湿度(RH)密切相关,SOR随着RH的增加而显著增大,当RH85%时,大气中的硫氧化物绝大部分以SO_4~(2-)形式存在,SOR接近1;而温度变化对SOR无明显影响;来自西南与东部受海洋显著影响的气团SOR高于来自陆地气团的相应值。夏季RH普遍较高,西南方向气团影响下高浓度的气态污染物(NO_2、O_3、NH_3)可明显促进SO_4~(2-)的生成,一定程度上控制人为气态污染物的排放能有效减少SO_4~(2-)生成。与SOR比较而言,氮氧化率(NOR)和NO_3~-与温度、RH、气态污染物浓度等环境因素的关系比较复杂,暗示多种反应机理共同作用影响氮氧化物的转化。  相似文献   

20.
为了解南京北郊大气颗粒物中含氮二次水溶性离子组分特征,2014年冬春两季使用Anderson 9级采样器对南京北郊大气颗粒物进行分级采样,利用离子色谱仪分析得到了各粒径范围颗粒物中的含氮二次无机组分质量浓度,结合能见度、相对湿度、颗粒物浓度等观测数据探讨了不同天气状况下大气颗粒物中含氮二次水溶性离子组分的含量及其粒径分布特征。结果表明:冬季和春季平均PM_(2.5)质量浓度分别达到了80.81μg·m~(-3)和52.57μg·m~(-3),明显超过二类标准限值。PM_(10)中NO_3~-和NH_4~+表现出较好的一致性,相关系数高达0.92,表明两种离子的来源比较相似;NO_2~-与NO_3~-和NH_4~+均呈现明显的负相关关系。就季节平均而言,冬季NO_3~-和NH_4~+质量浓度明显高于春季,尤其在0.43~2.1μm粒径范围内,这与冬季二次细颗粒物污染加剧有关;其他粒径段的浓度值季节差异不明显。不同能见度下,NO_3~-和NH_4~+质量浓度谱均呈三峰分布;当水平能见度3 km时,NO_3~-和NH_4~+最大谱峰大多在9.0~10μm粗粒径段;能见度降至3 km以下时,谱最大峰值出现在1.1~2.1μm粒径段。能见度水平越低,NO_3~-和NH_4~+的质量浓度越高,表明随着NO_3~-和NH_4~+浓度增加气溶胶的消光作用有所增强,从而导致能见度降低。霾天细模态中NH_4~+和NO_3~-的浓度较非霾天明显增加,粗模态无明显变化。NO_2~-作为中间产物其性质极不稳定,谱分布也比较复杂,但任何天气状况下均在粗粒径段出现高峰值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号