首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   3篇
综合类   5篇
基础理论   3篇
污染及防治   1篇
  2022年   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
农用地土壤环境质量评价与类别划分研究   总被引:2,自引:0,他引:2  
梳理了国内外农用地土壤环境质量评价研究进展,并分析了评价标准、评价方法和类别划分技术要点。基于监测点位和评价单元,从超标程度、累积性和农产品安全性等多维多角度,详细阐述农用地土壤环境质量评价程序和评价方法,探讨并提出适用目前我国土壤管理需要的基于多源数据多维评价的农用地土壤环境质量类别划分方法。  相似文献   
2.
土壤中污染物通常以复合污染的形式存在,各种污染物之间的相互作用增加了修复的难度,仅针对单一污染物进行治理通常难以达到土壤修复的要求。该文对重金属与多环芳烃复合污染的分布特征及两者之间的交互作用进行了总结,综述了几种复合污染土壤修复技术(淋洗法、植物修复、微生物修复和电动法)的作用机理及适用条件,并对该类型复合污染土壤修复技术的研究方向提出了展望。  相似文献   
3.
为科学评估地下水入渗地下室情景下的蒸气入侵过程,以苯和三氯乙烯为目标污染物,通过构建地下水入渗地下室情景下的概念模型,综合考虑地下水经孔隙渗透、裂隙渗透的入渗量,以及符合GB 50108—2008《地下工程防水技术规范》情景(简称“符合规范情景”)和最不利情景的蒸发量,计算得到地下水暴露量及室内空气中VOCs浓度,并与HJ 25.3—2019《建设用地土壤污染风险评估技术导则》(简称“《导则》”)规定暴露模型计算结果进行对比.结果表明:(1)在地下水埋深至地下室底板的距离为25~200 cm时,经裂缝渗透和经孔隙渗透的入渗量分别为3.86~37.7和1.55×10-4~2.35×10-3 m3/d,符合规范情景和最不利情景的蒸发量分别为2.30×10-3和0.30~0.52 m3/d;在地下水埋深至地下室底板的距离不变的情况下,经裂缝渗透的入渗量约为经孔隙渗透的15 000~25 000倍.对比不同情景下入渗量和蒸发量发现,以入渗后地下水全部蒸发达到稳定状态作为合理保守假设,建议选择蒸发量作为地下水...  相似文献   
4.
为科学评估地下水入渗地下室情景下的蒸气入侵过程,以苯和三氯乙烯为目标污染物,通过构建地下水入渗地下室情景下的概念模型,综合考虑地下水经孔隙渗透、裂隙渗透的入渗量,以及符合GB 50108—2008《地下工程防水技术规范》情景(简称“符合规范情景”)和最不利情景的蒸发量,计算得到地下水暴露量及室内空气中VOCs浓度,并与HJ 25.3—2019《建设用地土壤污染风险评估技术导则》(简称“《导则》”)规定暴露模型计算结果进行对比.结果表明:(1)在地下水埋深至地下室底板的距离为25~200 cm时,经裂缝渗透和经孔隙渗透的入渗量分别为3.86~37.7和1.55×10-4~2.35×10-3 m3/d,符合规范情景和最不利情景的蒸发量分别为2.30×10-3和0.30~0.52 m3/d;在地下水埋深至地下室底板的距离不变的情况下,经裂缝渗透的入渗量约为经孔隙渗透的15 000~25 000倍.对比不同情景下入渗量和蒸发量发现,以入渗后地下水全部蒸发达到稳定状态作为合理保守假设,建议选择蒸发量作为地下水...  相似文献   
5.
通过对某农药污染场地地下水中苯系物(BTEX)4年的长期监测数据进行分析,识别了该场地地下水中BTEX浓度的空间分布规律,并研究了场地地下水中BTEX的自然衰减规律.结果表明,地下水BTEX污染程度较重,浓度为0.001~180.52 mg·L-1,平均浓度为13.30 mg·L-1;BTEX浓度和污染羽面积随时间出现波动式变化,但整体仍呈逐渐减小的趋势,表明地下水中BTEX发生了自然衰减;地下水中氧化还原电位(ORP)与BTEX浓度呈显著负相关,说明研究区中BTEX高浓度区域在发生生物降解;研究区BTEX的衰减速率较小,半衰期较长,说明该场地单纯依靠监控自然衰减的修复时间将较长,需要与化学刺激等其他主动修复技术相结合以提高自然衰减效率.  相似文献   
6.
氯代脂肪烃(CAH)污染地下水在我国化工行业场地中十分普遍,严重影响场地再开发利用和周边居住人群的健康安全.监测自然衰减(MNA)修复技术是污染场地地下水修复技术中最具有效性和高成本效益的方法之一,而目前我国应用MNA技术修复污染场地还处于试点阶段,没有完整实施MNA技术的工程应用实例.以某农药场地地下水中CAH为研究对象,从CAH污染物的浓度变化、天然生物降解现状评价和衰减速率3个方面开展为期4年的CAH自然衰减修复实践研究.研究结果表明,监测井MW2-1为核心污染区,主要污染物为1,2-二氯乙烷(1,2-DCA)、氯乙烯(VCE)、氯仿、顺-1,2-二氯乙烯、1,1-二氯乙烷和氯乙烷,浓度呈波动式下降趋势,且下降趋势明显.除了MW2-1的VCE和1,2-DCA、MW2-5的VCE以及MW2-2的1,2-DCA的浓度高于风险控制值,其他点位污染物浓度均低于相应风险控制值.基于典型地球化学参数开展的微生物降解评估结果表明,该地块大部分区域微生物降解能力不足,而在污染物浓度比较高的监测点位,微生物具有显著的降解能力.地下水中CAH衰减速率范围为0.0001~0.0040 d-1...  相似文献   
7.
自然衰减监控技术在农药污染场地的实践应用较少,作用机制尚不明确.为此,以农药污染场地监控自然衰减实际工程案例为基础,对地下水中氯代甲烷烃的自然衰减能力、作用机制及降解时间进行了分析.Mann-Kendall趋势检验结果表明,作为污染源的MW1-17点位地下水中的四氯化碳和氯仿随时间呈现下降趋势,在4 a内降解率分别在95%和94%以上.经计算,四氯化碳和氯仿的降解速率常数分别为0.002 d-1和0.001 3 d-1.随着时间的延长,有充足的证据表明MW1-17点位存在微生物降解.四氯化碳与NO3-、DOC的相关性分析结果表明,MW1-17的四氯化碳在2016年8月-2018年12月期间以微生物共代谢降解为主,而在2018年12月以后以还原脱氯降解为主.微生物多样性的结果也表明,从2016年到2021年,地下水中微生物群落结构发生变化,逐渐向厌氧型转化,还原脱氯功能细菌丰度有所增加.  相似文献   
8.
于2015年1月至11月在广州利用大流量大气颗粒物采样器采集细颗粒物(PM_(2.5))样品,并利用热光反射法(TOR)测定大气颗粒物中有机碳(OC)和元素碳(EC)浓度。结果表明,广州ρ(PM_(2.5))年均值为(69.5±35.6)μg·m~(-3),是GB 3095—2012《环境空气质量标准》中PM_(2.5)年均质量浓度二级标准限值(35μg·m~(-3))的2.0倍,表明广州大气细颗粒物污染严重。OC、EC和总碳气溶胶(TCA)的年均质量浓度分别为(8.31±4.53)、(3.56±2.72)和(16.85±9.60)μg·m~(-3),分别占PM_(2.5)质量浓度的13.2%、5.9%和27.0%,表明含碳组分是PM_(2.5)的重要组成部分。OC和EC浓度季节变化规律存在差异性,OC浓度在冬季最高,而EC浓度在秋季最高。OC和EC的相关性弱和比值高的特征结果表明冬季二次有机碳(SOC)污染最严重,其平均质量浓度为6.9μg·m~(-3),占OC质量浓度的62.4%。主成分分析结果表明,冬季和春季广州PM_(2.5)中碳组分来源较复杂,主要包括机动车尾气、燃煤和生物质燃烧,夏季碳组分的主导污染来源是燃煤和机动车尾气,而秋季碳组分主要来源于机动车尾气。  相似文献   
9.
基于氮肥企业退役地块土壤、地下水、土壤气和室内空气中氨氮的实测数据,分析了氨氮在各地块中的污染水平和分布特征,评估了氨氮污染的人体健康风险,分析了氨挥发造成的刺激性异味风险和对室内空气质量的影响,及氨氮迁移转化对附近地表水和下游地下水水质的污染风险.分析发现,4个地块中土壤和地下水氨氮含量均表现较强的变异性,土壤中氨氮最高浓度分别高达12700.00,2420.00,2920.00,2370.00mg/kg,地下水中氨氮最高值分别高达7550.00,5100.00,847.00,3760.00mg/L.在平面分布上,4个地块中土壤和地下水较高浓度氨氮均主要分布在生产区和污水处理区,在垂向分布上4个地块间存在差异,氮肥厂I的土壤以黏土为主,多数点位氨氮含量随深度增加而递减,氮肥厂II、III和IV的土壤以粉土/粉砂或粉土夹粉黏为主,氨氮含量总体呈现随深度增加而增加的趋势.4个地块中,仅氮肥厂I在最保守条件下土壤中氨氮的最高危害熵(1.54)略超可接受风险水平(1.0).氮肥厂II和IV的土壤气和室内空气中检出氨浓度范围分别为≤ 9.88mg/m3和≤ 0.18mg/m3,对室内空气质量未产生不利影响.氮肥厂I和II紧邻河流监测井中的氨氮浓度超《地表水环境质量标准》中IV类(1.5mg/L)标准1.05~409.33倍,氮肥厂III和IV污染区地下水中氨氮浓度在至少4次监测结果中有轻微降低,且在下游监测井中发现硝态氮的积累.分析结果表明,4个地块在现状条件下土壤和地下水氨氮污染的人体健康风险较低,对室内空气质量影响较小.但地块地下水中氨氮是附近地表水和下游地下水环境的长期污染源,氨氮转化的硝态氮更易向下游迁移.建议今后处理氮肥企业退役地块氨氮污染时将其对地表水和下游地下水环境的污染风险纳入考虑.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号