首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用OMI传感器卫星反演数据分析2006—2016年宁夏地区大气臭氧时空分布变化趋势及其影响因素,结果表明,时间分布上,11 a间臭氧柱浓度年际变化呈先上升后下降的趋势,2010年达最大值,为368. 23 DU; 2016年达最小值,为287. 57 DU; 2010年之前臭氧柱年均增长率为2. 95%,2010年之后臭氧柱年均减少率为3. 2%。季节上具有明显的变化特征,每年季均浓度值都为春季最大,秋季最小。且11 a平均季均浓度值依然是春季(325. 61 DU)冬季(290. 92 DU)夏季(268. 19 DU)秋季(265. 61 DU);空间分布上,受主导风向北风大气传输的作用,臭氧柱浓度高值区主要分布在研究区北部及西南部地区,并且随着年际变化,臭氧柱浓度高值区表现出由北向南、由东向西移动的变化特征;研究区臭氧柱浓度与几项人为因素相关系数均不高,与大气NO2柱浓度呈负相关,决定系数为0. 683,受前体物光化学反应作用以及主导风向大气传输作用显著。  相似文献   

2.
汾渭平原煤炭能源消耗占比较高,是全国二氧化硫(Sulfur dioxide,SO_2)高污染区,2018年已被生态环境部纳入了"蓝天保卫战"治理重点区域,研究该区域SO_2污染状况,对科学有效地治理大气污染具有重要的意义。该研究利用2008年以来臭氧卫星传感器(Ozone Monitoring Instrument,OMI)监测的SO_2柱浓度数据,以及2013年以来的地面监测站的SO_2观测数据(OBS),综合运用空间插值、相关分析等方法探讨了汾渭平原大气SO_2季节性空间分布特征、逐月变化,以及不同时期平均年总量变化情况。结果表明,汾渭平原SO_2柱浓度值季节变化特征比较明显,冬季远远高于其他季节,春季和夏季中心城市柱浓度基本相当,秋季太原和临汾盆地高于渭河平原。从逐月的时间变化来看,太原、渭南和西安总体呈现下降趋势,临汾表现出了上升趋势,4个城市OMI的SO_2柱浓度值与地面监测站的SO_2浓度值具有较好的相关关系,R2最高的是渭南,达到了0.733 4,最低的是太原,为0.662 5。从2008—2012年和2013—2017年这两段时期的平均年柱浓度来看,前期的SO_2浓度值远大于后期,太原盆地北部下降幅度最大,达到了1.5~3.0 DU,西安及周边下降幅度为1.0~2.0 DU,临汾盆地和太原盆地南部变化较小,部分地区有上升趋势。与京津冀、四川盆地、长江三角洲、珠江三角洲相比,汾渭平原SO_2柱浓度变化幅度较小,2014年之后超过了京津冀地区,居于以上四个地区之上。该研究可为晋陕两省开展有针对性的协同治理提供科学依据。  相似文献   

3.
高浓度臭氧对人体健康造成伤害,还会影响植物生长;臭氧也是一种重要的温室气体,影响全球气候变化。本文利用塔克拉玛干沙漠腹地塔中地区2010年6月1日至2012年12月31日和北缘城市库尔勒2010年7月1日至2012年12月31日地表臭氧质量浓度连续观测数据,结合PM10和气象资料,对地表臭氧质量浓度的日、周、月、季节与不同天气条件下日变化特征进行了分析,同时探讨了影响臭氧变化的主要因素。结果表明,(1)臭氧质量浓度日变化具有明显的单峰型日变化规律,夜间变化平缓,白天变化剧烈。09:00前后达到最低值,18:00前后达到最高值,出现时间稍迟于沿海城市。(2)臭氧质量浓度变化具有周末效应现象。最高值出现在星期日,最低值出现在星期三;星期一至星期三浓度逐渐降低,星期四又逐渐上升。(3)塔中最高月平均浓度出现在2010年6月,质量浓度为89.6μg·m-3,最低质量浓度出现在2012年12月,为22.1μg·m-3;库尔勒最高月平均质量浓度出现在2010年8月,为82.1μg·m-3,最低为2012年12月的12.5μg·m-3。月平均质量浓度以6月份为中心对称分布,两边月份逐渐降低。(4)春、夏季臭氧质量浓度较高,秋季和冬季明显低于春季和夏季,与沿海大中型城市变化特征基本一致。(5)4种天气中,日变化最剧烈的是晴天,其次为小雨天气,阴天较平缓。沙尘天气出现前,臭氧质量浓度变化较小,沙尘天气开始后质量浓度下降,且下降速度较快。(6)辐射变化具有单峰型日变化规律,臭氧质量浓度变化明显晚于辐射变化,太阳辐射的强弱直接影响光化学反应速度,从而导致臭氧质量浓度的变化;臭氧质量浓度日变化与PM10质量浓度日变化具有相反变化趋势,但在时间变化上有一定的滞后性,臭氧质量浓度变化明显早于PM10的变化。(7)晴天少云的天气情况下臭氧质量浓度明显要高于阴雨(雪)天,气温、相对湿度、风速、风向、日照时数共同影响近地面臭氧质量浓度的变化,臭氧污染的发生是多种因素共同作用的结果。  相似文献   

4.
利用2003年到2010年的美国宇航局(National Aeronautics and Space Administration,NASA)的AIRS(Atmosphere InfraRed Sounder)官方反演的对流层中层(500 hPa)左右一段气柱内的CO2体积混合比产品分析中国地区对流层的CO2体积分数分布时空变化特征。所用数据是对AIRS L3产品2°×2.5°网格数据进行处理分析得到。经过对这8年的观测数据(2003年1月—2010年12月)的数据分析研究发现:中国地区平均CO2的体积分数在空间分布上极不平衡,总体高值集中于北部。CO2对流层中层的高值区集中在35°—45°N,形成东北平原、内蒙古中西部地区、塔克拉玛干沙漠和塔里木盆地4个高值中心,而云南地区和西藏南部上空的CO2值偏低。与中国地区8年平均CO2体积分数变化特征大体一致,每月(8年平均值)分布趋势也呈北部地区和东部地区高而南方体积分数值相对低的特征。CO2月平均体积分数的最高值一般出现在每年的4月或者5月,而每年的最低值则出现在每年的1月。对流层中层CO2体积分数呈现明显季节变化,总体上来说,从2003年到2010年这8年中,平均春、夏两季对流层中CO2含量较高,而秋、冬季CO2低于春夏两季。  相似文献   

5.
气溶胶存在巨大时空变化特征,对其辐射效应的评估仍存在很大的不确定性,有效的评估很大程度地依赖于气溶胶光学特性。华中地区气溶胶水平长期以来居高不下,然而对这一区域的气溶胶光学特性研究存在很大的缺口。利用MODIS C6数据集的气溶胶产品(MYD04_L2)对湖北省2002—2016年气溶胶光学特性的时空变化情况进行分析,并提取武汉周边地区气溶胶光学参数及大气柱气溶胶质量浓度,对其时间变化特征进行分析。结果表明,整个湖北省气溶胶光学厚度(AOD)、细粒子比(FMF)、气溶胶柱质量浓度(AMC)均呈现显著的高低值分界线,与湖北东西部的地势和人口密集程度差异有关。其中,AOD与AMC高低值的范围相似,而FMF的高、低值区与AOD、AMC分布相反。AOD季节上呈现春夏高、秋冬低的态势;然而,夏季AMC值最小,这表明夏季AOD高值是由气溶胶吸湿性增长作用增强引起的。受局地扬沙和远距离沙尘输送影响,春季鄂中南部存在远高于其他三季的大范围AOD和AMC高值区。FMF高值出现在夏秋两季,与二次气溶胶增长有关;最低值出现在冬季,武汉及荆州周边地区FMF值最低,受人为排放的粗模态粒子增加和偶发性沙尘天气共同作用。武汉地区气溶胶光学厚度和柱质量浓度呈逐年下降趋势,其中AOD在2008年以前逐年上升,而在2010年以后以每年0.05的幅度下降;FMF和AOD月平均最大值均出现在2010年6月。  相似文献   

6.
利用2003年到2010年的美国宇航局(National Aeronautics and Space Administration,NASA)的AIRS(Atmosphere InfraRed Sounder)官方反演的对流层中层(500 hPa)左右一段气柱内的CO2体积混合比产品分析中国地区对流层的CO2体积分数分布时空变化特征。所用数据是对AIRS L3产品2°×2.5°网格数据进行处理分析得到。经过对这8年的观测数据(2003年1月—2010年12月)的数据分析研究发现:中国地区平均CO2的体积分数在空间分布上极不平衡,总体高值集中于北部。CO2对流层中层的高值区集中在35°—45°N,形成东北平原、内蒙古中西部地区、塔克拉玛干沙漠和塔里木盆地4个高值中心,而云南地区和西藏南部上空的CO2值偏低。与中国地区8年平均CO2体积分数变化特征大体一致,每月(8年平均值)分布趋势也呈北部地区和东部地区高而南方体积分数值相对低的特征。CO2月平均体积分数的最高值一般出现在每年的4月或者5月,而每年的最低值则出现在每年的1月。对流层中层CO2体积分数呈现明显季节变化,总体上来说,从2003年到2010年这8年中,平均春、夏两季对流层中CO2含量较高,而秋、冬季CO2低于春夏两季。  相似文献   

7.
珠江口广州海域COD与DO的分布特征及影响因素   总被引:6,自引:0,他引:6  
于2003-2007年2月(冬季)、5月(春季)、8月(夏季)、10月(秋季)调查了广州海域16个站位的COD、DO以及其它理化因子的时空分布特征.调查期间,COD质量浓度范围为0.76~9.12 mg·L~(-1),平均值为2.83 mg·L~(-1);溶解氧质量浓度范围为1.98~9.79 mg·L~(-1),平均值为5.27 mg·L~(-1).结果表明,COD与DO的时空分布特征主要受生活污水排放,陆源排污,降雨量以及水动力状况等因素的影响.COD质量浓度在冬季和秋季较高,春季和夏季较低,而DO质量浓度则是冬季和春季高于秋季和夏季.空间分布上,COD质量浓度从湾内向湾外逐步递减,而DO变化趋势则相反,湾内站位在夏季出现缺氧区.相关性分析中,COD质最浓度与氮营养盐及Chl-a显著正相关,而DO则与COD、Chl-a、Ph以及石油烃显著负相关.COD与DO分布特征对于河口地区的赤潮及碳循环研究有一定研究价值.  相似文献   

8.
流沙湾海水中石油烃的时空分布特征研究   总被引:1,自引:0,他引:1  
于2008年2月(冬季)、5月(春季)、8月(夏季)和11月(秋季)对流沙湾进行了4次采样考察,研究分析了流沙湾表层海水中石油烃质量浓度的平面分布和季节变化特征。结果表明,在2008年度,流沙湾表层海水石油烃的质量浓度为0~1.930 mg.L-1,平均值为0.080 mg.L-1,季节差异比较明显,呈春、冬、夏、秋季依次减小的变化趋势,冬、春季节海水呈现不同程度石油污染,夏、秋季节属Ⅰ、Ⅱ级水质,整个流沙湾海域表层海水石油烃的平面分布相对比较均匀。在内外湾分布上,冬、春、秋季节外湾大于内湾,而夏季节内湾大于外湾。流沙湾的水产养殖活动是其海水石油烃时空分布的主要影响因素。  相似文献   

9.
利用2013年6月至2014年5月长三角地区16个城市环境监测站点的臭氧小时浓度数据,分析长三角地区臭氧污染时空分布特征。结果表明,长三角地区臭氧浓度呈现夏季高、冬季低的季节变化特征。近海城市臭氧年均浓度较高,均高于60μg·m-3,内陆城市浓度较低,均低于50μg·m-3,而NO2分布与之相反,呈现夏季低、冬季高的季节变化特征。长三角地区四季臭氧日变化皆为典型的单峰型,夏季日最小值出现在06:00,其他季节推迟约1 h,日最大值均出现在15:00前后。夏季臭氧日变化的峰值浓度最大,为168μg·m-3,冬季臭氧日变化的峰值浓度最小,为85μg·m-3。  相似文献   

10.
武夷山是著名的旅游胜地,同时地理环境复杂,气候资源丰富,也是东亚季风影响敏感区。为科学认识清洁区域的臭氧分布特征及污染的天气学成因,也为进一步开展臭氧污染预警预报和科学治理提供技术支撑,利用2015—2019年武夷山市逐小时污染物浓度监测数据和地面常规气象观测资料,采用统计分析和SPSS相关性分析等方法,对近年来武夷山市臭氧分布特征及其与气象要素的关系进行研究。结果表明,2015—2019年武夷山市臭氧的年评价值(MDA8-90)由110μg·m~(-3)增长至133μg·m~(-3),ρ(O_3–8 h)超过《环境空气质量标准》(GB 3095—2012)二级标准限值的天数从0 d上升到9 d,O_3作为首要污染物占比从48.5%上升为85.1%;同时,首要污染物为PM_(2.5)的天数呈逐年递减趋势,PM_(2.5)的首要污染物天数从2015年的36 d下降到2019年的8 d。春末(4—5月)和初秋(9—10月)是臭氧污染最为严重的季节,80.0%的臭氧超标日集中在这4个月。武夷山市ρ(O_3)小时均值分布均呈现单峰型分布,最高值出现在14:00,而后开始下降,最低值出现在07:00。ρ_((O_3–8 h))与日最高气温、平均风速、太阳日总辐射和日照时数呈显著正相关,相关系数分别为0.370**,0.402**,0.564**,0.565**;与相对湿度呈显著负相关(相关系数为-0.646**),并呈现先升后降的趋势。一些气象要素如高温度和低相对湿度等有助于该区域臭氧浓度的升高,当环境温度25℃、相对湿度70%时,都有利于对流层空气中臭氧的生成,更容易造成O_3浓度超标。此外当风速≤2.0 m·s-1时,随着风速的增加,ρ_((O_3–8 h))增大,而当风速2.0 m·s-1时,ρ_((O_3–8 h))随风速的增加呈显著下降趋势。  相似文献   

11.
基于2015—2020年海南省18个市县环境监测数据和气象观测数据,结合Cressman客观差值、相关分析和气候倾向率等统计方法对PM2.5和PM10质量浓度时空分布特征进行深入分析.结果表明,PM2.5和PM10质量浓度空间分布上均呈北半部高于南半部的特征,同时2015—2020年均表现为快速下降的变化趋势,趋势系数分别为-0.982(PM2.5)和-0.935(PM10),通过了99.9%的信度检验.PM2.5和PM10质量浓度有明显的季节变化特征,冬季质量浓度最高,秋季和春季次之,夏季最低.PM2.5和PM10质量浓度呈现U形的逐月变化,最低值出现在7月,最高值出现在12月. PM2.5和PM10质量浓度呈“双峰双谷”型的日变化,受人为活动影响较为显著. PM2.5和PM10与...  相似文献   

12.
渤海是中国最大的内海,四周几乎被陆地包围,陆源污染严重。自上世纪90年代中后期,渤海赤潮频发,水体富营养化程度严重。以渤海为研究区,采用Eppley-VGPM垂向归纳模型及一元线性回归分析法,对2003—2016年渤海NPP的时空分布进行研究。结果表明:14年来,渤海NPP年均值存在一定波动性变化且整体呈小幅度上升趋势。NPP月均值以8月最高,为5 265 mg·m~(-2)·d~(-1),1月最低,为677 mg·m~(-2)·d~(-1)。NPP季节性变化明显,表现为夏季秋季春季冬季,夏季NPP最高值出现在2010年,为5 027 mg·m~(-2)·d~(-1)。空间分布上,渤海存在四大NPP高值区,分别为辽东湾、渤海湾、莱州湾和秦皇岛邻近海域,其中莱州湾NPP数值最高。2003—2016年间NPP显著增加的海域面积占50.67%,分布在辽东湾、秦皇岛邻近海域及渤海中部海域;显著减少的海域面积占31.12%,分布在莱州湾及渤海湾;仅有0.28%的海域NPP出现极明显增加;17.93%的海域NPP并无明显变化。渤海NPP空间分布呈由近岸海域向远海岸海域逐步降低的趋势,最低值出现在渤海海峡。2003—2016年渤海海表温度无明显变化,相对稳定,海表温度年平均值为13.11℃。渤海NPP与海表温度以低度相关和负相关为主。研究结果可为渤海海域环境质量监测、渤海资源合理开发利用及环境治理提供依据。  相似文献   

13.
NO_2是大气对流层的一种痕量气体,也是城市空气污染的重要监测指标,影响着生态环境和人体健康。特殊的地形及不利于污染物扩散的天气条件,使得乌鲁木齐市冬季采暖期大气污染最为严重。2014—2016年采暖期(11月至翌年3月)在乌鲁木齐市城中心(市区)和城北部(工业园区)利用地基多轴差分吸收光谱仪(MAX-DOAS)对大气NO_2进行了监测,探讨NO_2柱浓度的变化特征及其污染来源。结果表明,(1)与2014—2015年采暖期相比,2015—2016年采暖期市区监测站点NO_2柱浓度下降了6.8%,工业园区监测站点上升了28.5%;NO_2柱浓度月均值表现出12月最大,3月最小,浓度范围是3.905×10~(15)~20.034×10~(15) molec·cm~(-2);两监测站NO_2柱浓度日变化明显,市区晚上偏高;工业园区早晚偏高,且晚大于早。(2)64%~71%的NO_2柱浓度的逐日变化由气象要素决定,其中平均风速对NO_2柱浓度的影响最显著;市区NO_2的污染源主要分布在东、东北和西南方向,正南北方向的风对NO_2有扩散作用;工业园区NO_2的污染源来自西北和东南方向,南风及偏东风对NO_2具有扩散作用。(3)乌鲁木齐市"煤改气"工程初见成效,而市周边工业园区及机动车尾气排放仍是大气污染治理的重点。  相似文献   

14.
本文介绍利用离子选择性电极法测定1980年南京市区降水中氯离子浓度的结果,结果表明:南京市区1980年除12月份没有降水外,各个月份降水中氯离子浓度变化于0.42—4.43毫克/升之间,年平均浓度为1.34毫克/升,并显示出有季节变化,冬季浓度最大.春、秋季次之,夏季浓度最小,并与国内外的一些观测资料作了对比。  相似文献   

15.
青岛地区大气气溶胶中微量金属的时空分布   总被引:17,自引:0,他引:17  
于 2 0 0 1年 4月— 2 0 0 2年 5月在青岛近海三个采样点采集了 1 0 0多个大气气溶胶样品 ,用ICP AES测定了Al,Fe ,Mn ,Cu ,Pb和Zn的浓度 ,讨论了这几种元素的时空分布特征及其来源 .结果表明 ,六种元素浓度的时空分布特征为 :沧口 >八关山 >仰口 ,TSP(总体悬浮颗粒物 )与Al,Fe ,Mn的浓度呈明显的季节变化 :春季 >冬季 >秋季 >夏季 ,而Cu ,Pb ,Zn的季节变化比较复杂 .六种元素中Al,Fe,Mn主要由自然过程输入 ,而Cu ,Pb ,Zn主要是人为来源 .  相似文献   

16.
汾渭平原能源结构以煤为主,清洁化利用水平偏低,煤烟型污染特征明显,全面了解汾渭平原二氧化硫(SO_2)和二氧化氮(NO_2)的时空变化特征对精准施策、综合治理具有重要的意义。基于卫星遥感数据,分析了2007—2018年汾渭平原SO_2和NO_2的柱浓度时间变化及空间分布特征,并讨论了社会经济因素对SO_2和NO_2柱浓度变化的影响。结果表明,汾渭平原SO_2和NO_2柱浓度均具有显著的周期性特征,总体表现为冬高、夏低,春秋季节次之,每个周期的波谷一般出现在7、8月,波峰一般出现在1、2月。SO_2和NO_2柱浓度的高值区主要分布在地形较为平坦的河谷平原地带。汾渭平原大部分地区SO_2柱浓度均呈现出了下降趋势,其中洛阳东北部、运城盆地和渭河平原东部下降趋势最为显著,趋势系数可达-0.08—-0.1DU·a-1。NO_2在各个区域的变化不尽相同,洛阳东北部和渭河平原下降趋势比较显著,趋势系数达到了-0.5×1015—-1.4×1015 mol·cm-2·a-1。而在太原盆地南部、吕梁大部分地区和临汾西部,呈现正的变化趋势,趋势系数为0.1×1015—0.2×1015mol·cm-2·a-1。该研究可为汾渭平原开展有针对性的联防联控、协同治理提供科学依据。  相似文献   

17.
通过对北京市市区内大于10 000 m2的10个湖泊上空0.5 m处甲烷浓度的季度观测,研究了北京市城市湖泊上空甲烷的浓度水平,并对其中4个典型的湖泊进行了每月1~2次的观测,分析了城市湖泊上空甲烷浓度的连续变化特征。结果表明湖泊上空甲烷浓度年平均值为2.337±0.431 mL/m3,高于全球均值和其他相关研究人员对北京市上空监测的结果。湖泊上空甲烷浓度季节之间的差异性显著(P<0.01),夏季的甲烷浓度较高(2.758±0.516mL/m3),秋季和春季相对较低。4个典型湖泊上空甲烷浓度连续变化具有一定的规律,大都在7-8月份达到甲烷浓度的高峰期,3月初融冰时都会有小幅增加;位于市中心的什刹海上空甲烷浓度相对较高。这表明了北京市内湖泊是甲烷排放的一个重要源头,同时也反映了北京作为一特大城市,其湖泊上空甲烷浓度受人类活动影响的特征。  相似文献   

18.
城市大气颗粒物表面半醌自由基的测定及特征分析   总被引:2,自引:0,他引:2  
采集上海市城区和郊区两个典型站位的大气颗粒物样品,通过二氯甲烷萃取分离并利用电子自旋共振波谱技术(ESR)分析测定吸附在颗粒物表面的稳定自由基.结果显示,测试样品的波谱特征表现为显著的三重信号峰,且g因子值均在2.00379—2.00395范围内,通过与醌类标准物质图谱比对,可以判断颗粒物表面至少吸附1种邻位半醌自由基.对自由基分布特征研究发现,自由基浓度的时空变化和粒径分布特征显著:闵行采样点的半醌自由基浓度远高于普陀采样点;在季节变化上表现为夏秋季半醌自由基浓度低于冬春季,其中春季最高,夏季最低;半醌自由基在不同粒径颗粒上的分布,呈现PM2.5>PM10>TSP的变化规律,说明自由基更容易富集在细颗粒上.  相似文献   

19.
为了解三亚河营养盐污染状况,于2018年6月—2019年5月对三亚河流域进行逐季调查,分析水体中氮磷营养盐的时空分布特征及影响因素,评估河流富营养化状况,并进一步估算三亚河营养盐入海通量.结果表明,三亚河水体中营养盐浓度季节变化显著,三亚河水体中DIN的浓度范围为0.028—2.096 mg·L-1,平均浓度为(0.700±0.279)mg·L-1,冬季>秋季>夏季>春季,NO3--N和NH4+-N是水体中DIN的主要存在形式.DIP浓度范围为0.007—0.442 mg·L-1,平均浓度为(0.140±0.066) mg·L-1,夏季>春季>冬季>秋季.空间分布上,N、P营养盐均呈现出上游及入海口河段浓度低,中下游河段浓度高的特点.河段环境特征、人为活动、降雨、潮汐作用是影响三亚河营养盐分布的主要因素.综合富营养盐指数(EI)结果显示,各季节三亚河上游及入海口河段均处于中富营...  相似文献   

20.
于春季、秋季和冬季分别对北京市3类典型道路(开阔型、十字路口型、峡谷型)空气中CO污染进行了现场监测,对CO时空分布和影响因素进行分析。结果表明:十字路口CO平均浓度最高,为2.81mg/m3,CO日变化幅度较小,在中午上下班时间出现高峰,峡谷型道路次之,为2.55mg/m3,CO日变化呈单峰型,在中午前出现爬坡,下午有所降低,学院路CO污染最轻,CO平均浓度为2.39mg/m3,CO浓度日变化呈多峰型,早中晚高,其他时段较低;冬季CO污染最严重,平均浓度明显高于春季和秋季,分别为3.18mg/m3、2.49mg/m3,和2.45mg/m3;风向对CO的分布也有很大影响,背风面的CO浓度明显高于迎风面的CO浓度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号