首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Forests experiencing moderate- or mixed-severity fire regimes are presumed to be widespread across the western United States, but few studies have characterized these complex disturbance regimes and their effects on contemporary forest structure. Restoration of pre-fire-suppression open-forest structure to reduce the risk of uncharacteristic stand-replacing fires is a guiding principle in forest management policy, but identifying which forests are clear candidates for restoration remains a challenge. We conducted dendroecological reconstructions of fire history and stand structure at 40 sites in the upper montane zone of the Colorado Front Range (2400-2800 m), sampled in proportion to the distribution of forest types in that zone (50% dominated by ponderosa pine, 28% by lodgepole pine, 12% by aspen, 10% by Douglas-fir). We characterized past fire severity based on remnant criteria at each site in order to assess the effect of fire history on tree establishment patterns, and we also evaluated the influence of fire suppression and climate. We found that 62% of the sites experienced predominantly moderate-severity fire, 38% burned at high severity, and no sites burned exclusively at low severity. The proportion of total tree and sapling establishment was significantly different among equal time periods based on a chi-square test, with highest tree and sapling establishment during the pre-fire-suppression period (1835-1919). Superposed epoch analysis revealed that fires burned during years of extreme drought (95% CI). The major pulse of tree establishment in the upper montane zone occurred during a multidecadal period of extreme drought conditions in the Colorado Front Range (1850-1889), during which 53% of the fires from the 1750-1989 period burned. In the upper montane zone of the Colorado Front Range, historical evidence suggests that these forests are resilient to prolonged periods of severe drought and associated severe fires.  相似文献   

2.
3.
Quaking aspen (Populus tremuloides) is declining across the western United States. Aspen habitats are among the most diverse plant communities in this region and loss of these habitats can result in shifts in biodiversity, productivity, and hydrology across a range of spatial scales. Western aspen occurs on the majority of sites seral to conifer species, and long-term maintenance of these aspen woodlands requires periodic fire. Over the past century, fire intervals, extents, and intensities have been insufficient to regenerate aspen stands at historic rates; however the effects of various fire regimes and management scenarios on aspen vegetation dynamics at broad spatial and temporal scales are unexplored. Here we use field data, remotely sensed data, and fire atlas information to develop a spatially explicit landscape simulation model to assess the effects of current and historic wildfire regimes and prescribed burning programs on landscape vegetation composition across two mountain ranges in the Owyhee Plateau, Idaho. Model outputs depict the future structural makeup and species composition of the landscape at selected time steps under simulated management scenarios. We found that under current fire regimes and in the absence of management activities, loss of seral aspen stands will continue to occur over the next two centuries. However, a return to historic fire regimes (burning 12–14% of the modeled landscape per decade) would maintain the majority of aspen stands in early and mid seral woodland stages and minimizes the loss of aspen. A fire rotation of 70–80 years was estimated for the historic fire regime while the current fire regime resulted in a fire rotation of 340–450 years, underscoring the fact that fire is currently lacking in the system. Implementation of prescribed burning programs, treating aspen and young conifer woodlands according to historic fire occurrence probabilities, are predicted to prevent conifer dominance and loss of aspen stands.  相似文献   

4.
Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a wide range of fuel conditions, supporting the hypothesis that this region's fire regime was mixed severity.  相似文献   

5.
DeLuca TH  Sala A 《Ecology》2006,87(10):2511-2522
Recurrent, low-severity fire in ponderosa pine (Pinus ponderosa)/interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests is thought to have directly influenced nitrogen (N) cycling and availability. However, no studies to date have investigated the influence of natural fire intervals on soil processes in undisturbed forests, thereby limiting our ability to understand ecological processes and successional dynamics in this important ecosystem of the Rocky Mountain West. Here, we tested the standing hypothesis that recurrent fire in ponderosa pine/Douglas-fir forests of the Inland Northwest decreases total soil N, but increases N turnover and nutrient availability. We compared soils in stands unburned over the past 69-130 years vs. stands exposed to two or more fires over the last 130 years at seven distinct locations in two wilderness areas. Mineral soil samples were collected from each of the seven sites in June and July of 2003 and analyzed for pH, total C and N, potentially mineralizable N (PMN), and extractable NH4+, NO3-, PO4(-3), Ca+2, Mg+2, and K+. Nitrogen transformations were assessed at five sites by installing ionic resin capsules in the mineral soil in August of 2003 and by conducting laboratory assays of nitrification potential and net nitrification in aerobic incubations. Total N and PMN decreased in stands subjected to multiple fires. This loss of total N and labile N was not reflected in concentrations of extractable NH4+ and NO3-. Rather, multiple fires caused an increase in NO3 sorbed on ionic resins, nitrification potential, and net nitrification in spite of the burned stands not having been exposed to fire for at least 12-17 years. Charcoal collected from a recent fire site and added to unburned soils increased nitrification potential, suggesting that the decrease of charcoal in the absence of fire may play an important role in N transformations in fire-dependent ecosystems in the long term. Interestingly, we found no consistent effect of fire frequency on extractable P or alkaline metal concentrations. Our results corroborate the largely untested hypothesis that frequent fire in ponderosa pine forests increases inorganic N availability in the long term and emphasize the need to study natural, unmanaged sites in far greater detail.  相似文献   

6.
We studied northern flying squirrel (Glaucomys sabrinus) demography in the eastern Washington Cascade Range to test hypotheses about regional and local abundance patterns and to inform managers of the possible effects of fire and fuels management on flying squirrels. We quantified habitat characteristics and squirrel density, population trends, and demography in three typical forest cover types over a four-year period. We had 2034 captures of flying squirrels over 41 000 trap nights from 1997 through 2000 and marked 879 squirrels for mark-recapture population analysis. Ponderosa pine (Pinus ponderosa) forest appeared to be poorer habitat for flying squirrels than young or mature mixed-conifer forest. About 35% fewer individuals were captured in open pine forest than in dry mixed-conifer Douglas-fir (Pseudotsuga menziesii) and grand fir (Abies grandis) forests. Home ranges were 85% larger in pine forest (4.6 ha) than in mixed-conifer forests (2.5 ha). Similarly, population density (Huggins estimator) in ponderosa pine forest was half (1.1 squirrels/ha) that of mixed-conifer forest (2.2 squirrels/ha). Tree canopy cover was the single best correlate of squirrel density (r = 0.77), with an apparent threshold of 55% canopy cover separating stands with low- from high-density populations. Pradel estimates of annual recruitment were lower in open pine (0.28) than in young (0.35) and mature (0.37) forest. High recruitment was most strongly associated with high understory plant species richness and truffle biomass. Annual survival rates ranged from 45% to 59% and did not vary among cover types. Survival was most strongly associated with understory species richness and forage lichen biomass. Maximum snow depth had a strong negative effect on survival. Rate of per capita increase showed a density-dependent response. Thinning and prescribed burning in ponderosa pine and dry mixed conifer forests to restore stable fire regimes and forest structure might reduce flying squirrel densities at stand levels by reducing forest canopy, woody debris, and the diversity or biomass of understory plants, truffles, and lichens. Those impacts might be ameliorated by patchy harvesting and the retention of large trees, woody debris, and mistletoe brooms. Negative stand-level impacts would be traded for increased resistance and resilience of dry-forest landscapes to now-common, large-scale stand replacement fires.  相似文献   

7.
Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1-10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by >95%, and inadequate fire frequencies threaten many of the remnants today. In the absence of frequent fire, rapid colonization of hardwoods and shrubs occurs, and a broad-leaved midstory develops. This midstory encroachment has been the focus of much research and management concern, largely based on the assumption that the midstory reduces understory plant diversity through direction competition via light interception. The general application of this mechanism of degradation is questionable, however, because midstory density, leaf area, and hardwood species composition vary substantially along a soil moisture gradient from mesic to extremely xeric sites. Reanalysis of recently reported data from xeric longleaf pine communities suggests that the development of the forest floor, a less conspicuous change in forest structure, might cause a decline in plant biodiversity when forests remain unburned. We report here a test of the interactions among fire, litter accumulation, forest floor development, and midstory canopy density on understory plant diversity. Structural equation modeling showed that within xeric sites, forest floor development was the primary factor explaining decreased biodiversity. The only effects of midstory development on biodiversity were those mediated through forest floor development. Boundary line analysis of functional guilds of understory plants showed sensitivity to even minor development of the forest floor in the absence of fire. These results challenge the prevailing management paradigm and suggest that within xeric longleaf pine communities, the primary focus of managed fire regime should be directed toward the restoration of forest floor characteristics rather than the introduction of high-intensity fires used to regulate midstory structure.  相似文献   

8.
Kulakowski D  Veblen TT 《Ecology》2007,88(3):759-769
Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.  相似文献   

9.
Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late-successional species.  相似文献   

10.
The FORCLIM model of forest dynamics was tested against field survey data for its ability to simulate basal area and composition of old forests across broad climatic gradients in western Oregon, USA. The model was also tested for its ability to capture successional trends in ecoregions of the west Cascade Range. It was then applied to simulate present and future (1990-2050) forest landscape dynamics of a watershed in the west Cascades. Various regimes of climate change and harvesting in the watershed were considered in the landscape application. The model was able to capture much of the variation in forest basal area and composition in western Oregon even though temperature and precipitation were the only inputs that were varied among simulated sites. The measured decline in total basal area from tall coastal forests eastward to interior steppe was matched by simulations. Changes in simulated forest dominants also approximated those in the actual data. Simulated abundances of a few minor species did not match actual abundances, however. Subsequent projections of climate change and harvest effects in a west Cascades landscape indicated no change in forest dominance as of 2050. Yet, climate-driven shifts in the distributions of some species were projected. The simulation of both stand-replacing and partial-stand disturbances across western Oregon improved agreement between simulated and actual data. Simulations with fire as an agent of partial disturbance suggested that frequent fires of low severity can alter forest composition and structure as much or more than severe fires at historic frequencies.  相似文献   

11.
Pi?on pine and juniper woodlands in the southwestern United States are often represented as an expanding and even invasive vegetation type, a legacy of historic grazing, and culpable in the degradation of western rangelands. A long-standing emphasis on forage production, in combination with recent hazard fuel concerns, has prompted a new era of woodland management with stated restoration objectives. Yet the extent and dynamics of pi?on-juniper communities that predate intensive Euro-American settlement activities are poorly known or understood, while the intrinsic ecological, aesthetic, and economic values of old-growth woodlands are often overlooked. Historical changes in pi?on-juniper stands include two related, but poorly differentiated processes: recent tree expansion into grass- or shrub-dominated (i.e., non-woodland) vegetation and thickening or infilling of savanna or mosaic woodlands predating settlement. Our work addresses the expansion pattern, modeling the occurrence of "older" savanna and woodland stands extant prior to 1850 in contrast to "younger" pi?on-juniper growth of more recent, postsettlement origin. We present criteria in the form of a diagnostic key for distinguishing "older," pre-Euro-American settlement pi?on-juniper from "younger" (post-1850) stands and report results of predictive modeling and mapping efforts within a north-central New Mexico study area. Selected models suggest a primary role for soil moisture in the current distribution of "old" vs. "young" pi?on-juniper stands. Presettlement era woodlands are shown to occupy a discrete ecological space, defined by the interaction of effective (seasonal) moisture with landform setting and fine-scale (soil/water) depositional patterns. "Older" stands are generally found at higher elevations or on skeletal soils in upland settings, while "younger" stands (often dominated by one-seed juniper, Juniperus monosperma) are most common at lower elevations or in productive, depositional settings. Modeling at broad regional scales can enhance our general understanding of pi?on-juniper ecology, while predictive mapping of local areas has potential to provide products useful for land management. Areas of the southwestern United States with strong monsoonal (summer moisture) patterns appear to have been the most susceptible to historical woodland expansion, but even here the great majority of extant pi?on-juniper has presettlement origins (although widely thickened and infilled historically), and old-growth structure is not uncommon in appropriate upland settings.  相似文献   

12.
Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep-burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity. This new approach was used to identify black spruce stands that experienced intermediate- to high-severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (approximately 4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co-dominated by deciduous forest stands by 20%. Such disturbance-driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.  相似文献   

13.
Abstract: We developed the landscape age-class demographics simulator ( LADS) to model historical variability in the amount of old-growth and late-successional forest in the Oregon Coast Range over the past 3,000 years. The model simulated temporal and spatial patterns of forest fires along with the resulting fluctuations in the distribution of forest age classes across the landscape. Parameters describing historical fire regimes were derived from data from a number of existing dendroecological and paleoecological studies. Our results indicated that the historical age-class distribution was highly variable and that variability increased with decreasing landscape size. Simulated old-growth percentages were generally between 25% and 75% at the province scale (2,250,000 ha) and never fell below 5%. In comparison, old-growth percentages varied from 0 to 100% at the late-successional reserve scale (40,000 ha). Province-scale estimates of current old-growth (5%) and late-successional forest (11%) in the Oregon Coast Range were lower than expected under the simulated historical fire regime, even when potential errors in our parameter estimates were considered. These uncertainties do, however, limit our ability to precisely define ranges of historical variability. Our results suggest that in areas where historical disturbance regimes were characterized by large, infrequent fires, management of forest age classes based on a range of historical variability may be feasible only at relatively large spatial scales. Comprehensive landscape management strategies will need to consider other factors besides the percentage of old forests on the landscape, including the spatial pattern of stands and the rates and pathways of landscape change.  相似文献   

14.
Abstract:  The herpetofauna (amphibians and reptiles) of northwestern forests (U.S.A.) is diverse, and many species are locally abundant. Most forest amphibians west of the Cascade Mountain crest are associated with cool, cascading streams or coarse woody material on the forest floor, which are characteristics of mature forests. Extensive loss and fragmentation of habitat resulted from logging across approximately 50% of old-growth forests in northern California and approximately 80% of stands in Oregon and Washington. There is a complex landscape mosaic and overlap of northern and southern biotic elements in the Klamath-Siskiyou Region along the Oregon and California border, creating a biodiversity hotspot. The region experiences many low-severity fires annually, punctuated by periodic major fires, including the Biscuit fire, the largest in North America in 2002. In the fire's northern portion, severe fire occurred on >50% of stands of young, managed trees but on only about 25–33% of old-growth stands. This suggests that the legacy of timber harvest may produce fire-prone stands. Calls for prescribed fire and thinning to reduce fuel loads will remove large amounts of coarse woody material from forests, which reduces cover for amphibians and alters nutrient inputs to streams. Our preliminary evidence suggests no negative effects of wildfire on terrestrial amphibians, but stream amphibians decrease following wildfire. Most reptiles are adapted to open terrain, so fire usually improves their habitat. Today, the challenge is to maintain biodiversity in western forests in the face of intense political pressures designed to "prevent" catastrophic fires. We need a dedicated research effort to understanding how fire affects biota and to proactively investigate outcomes of fuel-reduction management on wildlife in western forests.  相似文献   

15.
Forest Restoration and Fire: Principles in the Context of Place   总被引:3,自引:0,他引:3  
Abstract:  There is broad consensus that active management through thinning and fire is urgently needed in many forests of the western United States. This consensus stems from physically based models of fire behavior and substantial empirical evidence. But the types of thinning and fire and where they are applied are the subjects of much debate. We propose that low thinning is the most appropriate type of thinning practice. Treating surface fuels, reducing ladder fuels, and opening overstory canopies generally produce fire-safe forest conditions, but large, fire-resistant trees are also important components of fire-safe forests. The context of place is critical in assigning priority for the limited resources that will be available for restoration treatments. Historical low-severity fire regimes, because of their current high hazards and dominance by fire-resistant species, are the highest priority for treatment. Mixed-severity fire regimes are of intermediate priority, and high-severity fire regimes are of lowest priority. Classification systems based on potential vegetation will help identify these fire regimes at a local scale.  相似文献   

16.
《Ecological modelling》1999,114(2-3):175-193
A carbon-based model has been developed to simulate responses of trembling aspen (Populus tremuloides Michx.) stands to interannual climatic variation and insect defoliation. The model is designed for medium time scale (10–100 years) simulations and requires only daily maximum and minimum temperature and precipitation as meteorological inputs. The modelling approach is similar to FOREST-BGC but includes additional processes known to be important in deciduous forests. These include removal of leaf area during outbreaks of forest tent caterpillar (Malacosoma disstria Hbn.), phenological changes in leaf area index, storage and allocation of non-structural carbohydrate and the contribution of understorey vegetation to evapotranspiration. The model was used for simulations of growth and mortality of biomass carbon in two mature aspen forests located in the climatically dry transition zone between the boreal forest and prairie grassland regions of Saskatchewan, Canada. Model inputs of annual defoliation intensity were based on historic records of insect defoliation and the incidence of light-coloured tree rings in disks or cores collected from aspen at each of the two sites. At both sites, moderately good correlations (r2=0.47–0.54) were obtained between modelled interannual changes in stem carbon growth and observed interannual changes in stem basal area increment obtained from tree-ring analysis. Model outputs of stem biomass carbon were found to be highly sensitive to parameters describing seasonal leaf area duration, insect defoliation intensity, photosynthesis and root respiration and carbohydrate allocation to growth versus storage.  相似文献   

17.
We examined how fire hazard was affected by prescribed burning and fuel recovery over the first six years following treatment. Eight common Mediterranean fuel complexes managed by means of prescribed burning in limestone Provence (South-Eastern France) were studied, illustrating forest and woodland, garrigue and grassland situations. The coupled atmosphere-wildfire behaviour model FIRETEC was used to simulate fire behaviour (ROS, intensity) in these complex vegetations. The temporal threshold related to the effectiveness of prescribed burning in reducing the fire hazard was assessed from derivated fuel dynamics after treatment. The study showed that prescribed burning treatment was effective for the first two years in most of the Mediterranean plant communities analysed. Thereafter, all forests and shrublands were highly combustible with a fire line intensity of more than 5000 kW/m except for pine stands with or without oak (medium intensity of 2000 kW m−1 3 years after treatment). Low fire line intensity (900 kW m−1) was obtained for grassland which was entirely treatment-independent since the resprouter hemicryptophyte, Brachypodium retusum, is highly resilient to fire. Fire behaviour was greatly affected by fuel load accumulation of Quercus ilex in woodland, and by standing necromass of Rosmarinus officinalis in treated garrigue. Pure pine stands with shrub strata similar to garrigue showed a lower fire intensity due to wind speed decrease at ground level under tree canopy, underlining the advantage of maintaining a proportion of canopy cover in strategic fuel-break zones.  相似文献   

18.
Longleaf pine (Pinus palustris) savannas of the southeastern U.S. represent an archetype of a fire dependent ecosystem. They are known to have very short fire return intervals (∼1-3 years) that perpetuate understory plant diversity (up to 50 species m−2), support pine recruitment, and suppress fire sensitive hardwoods. Understanding the relationships that regulate longleaf and southern hardwoods is especially critical. With decreased fire frequency, insufficient intensity, or lack of underground competition, a woody mid-story rapidly develops, dominated by fire sensitive trees and shrubs that in-turn suppress more fire dependent species (including pine seedlings). This may occur in forest gaps, where pine-needle abundance is diminished, reducing fire spread potential. The interactions between longleaf pine, hardwoods, forest fuels, and fire frequency are complex and difficult to understand spatially. The objective of this study was to develop a spatially explicit longleaf pine-hardwood stochastic simulation model (LLM), incorporating tree demography, plant competition, and fuel and fire characteristics. Data from two longleaf pine study sites were used to develop and evaluate the model with the goal to incorporate simple site-specific calibration parameters for model versatility. Specific model components included pine seed masting, hardwood clonal sprouting, response to fire (re-sprouting, mortality), and tree density driven competition effects. LLM spatial outputs were consistent with observed forest gap dynamics associated with pine seedling establishment and hardwood encroachment. Changes in fire frequency (i.e., fire probability = 0.35-0.05) illustrated a shift in community structure from longleaf pine dominated to a hardwood dominated community. This approach to assessing model response may be useful in characterizing longleaf ecosystem resilience, especially at intermediate fire frequencies (e.g., 0.15) where the community may be sensitive to small changes in the fire regime. Height distributions and population densities were similar to in situ findings (field and LIDAR data) for both study sites. Height distributions output by the LLM illustrated fluctuations in population structure. The LLM was especially useful in determining knowledge gaps associated with fuel and fire heterogeneity, plant-plant interactions, population structure and its temporal fluctuations, and hardwood demography. This is the first known modeling work to simulate interactions between longleaf pine and hardwoods and provides a foundation for further studies on fire and forest management, especially in relation to ecological forestry practices, restoration, and site-specific applications.  相似文献   

19.
Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire size and frequency from 1910 to 2008 (all fires > 40 ha), and the percentage of high-severity in fires from 1987 to 2008 (all fires > 400 ha) on the four national forests of northwestern California. During 1910-2008, mean and maximum fire size and total annual area burned increased, but we found no temporal trend in the percentage of high-severity fire during 1987-2008. The time series of severity data was strongly influenced by four years with region-wide lightning events that burned huge areas at primarily low-moderate severity. Regional fire rotation reached a high of 974 years in 1984 and fell to 95 years by 2008. The percentage of high-severity fire in conifer-dominated forests was generally higher in areas dominated by smaller-diameter trees than in areas with larger-diameter trees. For Douglas-fir forests, the percentage of high-severity fire did not differ significantly between areas that re-burned and areas that only burned once (10% vs. 9%) when re-burned within 30 years. Percentage of high-severity fire decreased to 5% when intervals between first and second fires were > 30 years. In contrast, in both mixed-conifer and fir/high-elevation conifer forests, the percentage of high-severity fire was less when re-burned within 30 years compared to first-time burned (12% vs. 16% for mixed conifer; 11% vs. 19% for fir/high-elevation conifer). Additionally, the percentage of high-severity fire did not differ whether the re-burn interval was less than or greater than 30 years. Years with larger fires and greatest area burned were produced by region-wide lightning events, and characterized by less winter and spring precipitation than years dominated by smaller human-ignited fires. Overall percentage of high-severity fire was generally less in years characterized by these region-wide lightning events. Our results suggest that, under certain conditions, wildfires could be more extensively used to achieve ecological and management objectives in northwestern California.  相似文献   

20.
Forests function as a major global C sink, and forest management strategies that maximize C stocks offer one possible means of mitigating the impacts of increasing anthropogenic CO2 emissions. We studied the effects of thinning, a common management technique in many forest types, on age-related trends in C stocks using a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands ranging from 9 to 306 years old. Live tree C stocks increased with age to a maximum near the middle of the chronosequence in unmanaged stands, and increased across the entire chronosequence in thinned stands. C in live understory vegetation and C in the mineral soil each declined rapidly with age in young stands but changed relatively little in middle-aged to older stands regardless of management. Forest floor C stocks increased with age in unmanaged stands, but forest floor C decreased with age after the onset of thinning around age 40 in thinned stands. Deadwood C was highly variable, but decreased with age in thinned stands. Total ecosystem C increased with stand age until approaching an asymptote around age 150. The increase in total ecosystem C was paralleled by an age-related increase in total aboveground C, but relatively little change in total belowground C. Thinning had surprisingly little impact on total ecosystem C stocks, but it did modestly alter age-related trends in total ecosystem C allocation between aboveground and belowground pools. In addition to characterizing the subtle differences in C dynamics between thinned and unmanaged stands, these results suggest that C accrual in red pine stands continues well beyond the 60-100 year management rotations typical for this system. Management plans that incorporate longer rotations and thinning in some stands could play an important role in maximizing C stocks in red pine forests while meeting other objectives including timber extraction, biodiversity conservation, restoration, and fuel reduction goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号