首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Kulakowski D  Veblen TT 《Ecology》2007,88(3):759-769
Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.  相似文献   

2.
Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep-burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity. This new approach was used to identify black spruce stands that experienced intermediate- to high-severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (approximately 4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co-dominated by deciduous forest stands by 20%. Such disturbance-driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.  相似文献   

3.
There is mounting evidence that fire size and severity have been growing on the central and southern California coastal landscape over the past several decades. Landsat satellite data was analyzed for the 20 largest fires on the Central California coast since 1984 to determine the relationships between climate/weather conditions at the time of ignition and the size of high burn severity (HBS) areas. The study also examined the relationship between area burned and landscape patterns of HBS coverage, including patch size, edge complexity, perimeter-to-area ratio, and aggregation metrics. Results showed that climate conditions at the time of ignitions have been significant controllers of the total area of HBS and the complexity of HBS patches on the fire landscape. As maximum air temperatures for the month of ignition approached 40o C, the percentage of HBS to total area burned frequently exceeded 20%. The percentage of HBS to total area burned also exceed 20% when the precipitation total recorded during the previous 12 months was less than 25% of the annual average precipitation. Landscape analysis results showed that, as the total area burned in fires on the Central California coast grows, the edge lengths and areas of HBS patches also grows at a rapid rate. At the same time, the perimeter-to-area ratio of HBS patches decreases gradually and the HBS patches become more aggregated as total burned area grows.  相似文献   

4.
Abstract: The ability of reserves to maintain natural ecosystem processes such as fire disturbance regimes is central to long-term conservation. Fire-scarred tree samples were used to reconstruct fire regimes at five study sites totaling approximately 230 ha in pine (   Pinus spp.) and oak ( Quercus spp.) forests of La Michilía Biosphere Reserve on the dry east slope of the Sierra Madre Occidental, Durango, Mexico. Study sites covered a 20-km environmental gradient of elevation, topography, and human land uses. Plant communities ranged from oak-pine to mixed conifer forests. Fires were frequent at all sites prior to 1930, when large-scale grazing of domestic livestock was initiated. Widespread fires have been excluded from four of the five sites since 1945, with an essentially uninterrupted regime of frequent fires continuing only in the reserve core. Xeric sites had many, smaller fires, whereas mesic sites had fewer but larger fires. On a reserve-wide scale, a fire burned on at least one site nearly every year, usually in the dry spring or early summer season, but fire years were rarely synchronous among the sites. Fire occurrence was weakly related to the Southern Oscillation climate pattern; major reserve-wide fire years almost never coincided with wet Southern Oscillation extremes but only occasionally matched dry extremes. Maintenance of the long-term frequent-fire regime in the reserve core is one indicator that the biosphere reserve model has been successful in conserving natural processes, but the protected area is small ( 7000 ha). Because of the key role of frequent-fire regimes in regulating ecosystem structure and function, restoration of the ecological role of fire disturbance is a desirable conservation strategy.  相似文献   

5.
The HFire fire regime model was used to simulate the natural fire regime (prior to European settlement) on Kennedy Space Center, Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida. Model simulations were run for 500 years and the model was parameterized using information generated from previously published empirical studies on these properties (e.g., lightning fire ignition frequencies and ignition seasonality). A mosaic pattern of frequent small fires dominated this fire regime with rare but extremely large fires occurring during dry La Niña periods. This simulated fire size distribution very closely matched the previously published fire size distribution for lightning ignitions on these properties. A sensitivity analysis was performed to establish which parameters were most influential and the range of variation surrounding empirically parameterized model output. Dead fuel moisture and wind speed had the largest influence on model outcome. A wide range of variance was observed surrounding the composite simulation with the least being 6% in total burn frequency and the greatest being 49% in total area burned. Because simulation modeling is the best option for fire regime reconstruction in many rapidly growing shrub dominated systems, these results will be of interest to scientists and fire managers for delineating the natural fire regime on these properties, the southeastern United States and other fire adapted shrub systems worldwide.  相似文献   

6.
Abstract: The growing prevalence of fragmentation and fire in tropical forests makes it imperative to quantify changes in these disturbances and to understand the ways in which they interact across the landscape. I used a multitemporal series of Landsat images to study the incidence and coincidence of fire and fragmentation in two areas of Pará state in the eastern Brazilian Amazon: Tailândia and Paragominase. In both areas, deforestation and forest fires were quantified for time series of 6–10 years. The Tailândia study area typifies a landscape with the herringbone pattern of government-settled colonists, and the Paragominas area is dominated by large cattle ranches. In both areas, over 90% of the forests affected by fire were associated with forest edges. Although most burned forest occurred within 500 m of forest edges, some fires occurred in deep forest, several kilometers from any edge. The obvious synergism between forest fragmentation and fire poses serious risks to tropical ecosystems and has important implications for land management.  相似文献   

7.
The evaluation of area-specific risks for large fires is of great policy relevance to fire management and prevention. When analyzing data for the burned areas of large fires in Canada, we found that there are dramatic patterns that cannot be adequately modelled by traditional hierarchical modelling assuming spatial autocorrelation. In this paper, we use the robust locally weighted scatterplot smoothing (LOESS) technique to remove spatial and temporal trends; and we account for periodical cycles by employing the relevant periodic functions as covariates in a hierarchical Gamma mixed effects model. Based on the results of this generalized multilevel analysis of large fire size, we provide an area-specific relative risks ranking system for Canada and confirm that lightning tends to cause more severe damage in terms of fire size than human factor. A diagnostic check on the modelling shows that large fires data are reasonably modelled using this combination of semiparametric and mixed effects modelling approaches.  相似文献   

8.
Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire surrogates (forest thinning), and fire and fire surrogate combined treatments in the most extensively studied fire-prone, forested biome (forests of the United States). Effect sizes (magnitude of response) and their 95% confidence limits (response consistency) were estimated for each species-by-treatment combination with two or more observations. We found 41 studies of 119 bird and 17 small-mammal species that examined short-term responses (< or =4 years) to thinning, low/moderate- and high-severity fire, and thinning plus prescribed fire; data on other taxa and at longer time scales were too sparse to permit quantitative assessment. At the stand scale (<50 ha), thinning and low/moderate-severity fire demonstrated similar response patterns in these forests. Combined thinning plus prescribed fire produced a higher percentage of positive responses. High-severity fire provoked stronger responses, with a majority of species possessing higher or lower effect sizes relative to fires of lower severity. In the short term and at fine spatial scales, fire surrogate forest-thinning treatments appear to effectively mimic low/moderate-severity fire, whereas low/moderate-severity fire is not a substitute for high-severity fire. The varied response of taxa to each of the four conditions considered makes it clear that the full range of fire-based disturbances (or their surrogates) is necessary to maintain a full complement of vertebrate species, including fire-sensitive taxa. This is especially true for high-severity fire, where positive responses from many avian taxa suggest that this disturbance (either as wildfire or prescribed fire) should be included in management plans where it is consistent with historic fire regimes and where maintenance of regional vertebrate biodiversity is a goal.  相似文献   

9.
Forests experiencing moderate- or mixed-severity fire regimes are presumed to be widespread across the western United States, but few studies have characterized these complex disturbance regimes and their effects on contemporary forest structure. Restoration of pre-fire-suppression open-forest structure to reduce the risk of uncharacteristic stand-replacing fires is a guiding principle in forest management policy, but identifying which forests are clear candidates for restoration remains a challenge. We conducted dendroecological reconstructions of fire history and stand structure at 40 sites in the upper montane zone of the Colorado Front Range (2400-2800 m), sampled in proportion to the distribution of forest types in that zone (50% dominated by ponderosa pine, 28% by lodgepole pine, 12% by aspen, 10% by Douglas-fir). We characterized past fire severity based on remnant criteria at each site in order to assess the effect of fire history on tree establishment patterns, and we also evaluated the influence of fire suppression and climate. We found that 62% of the sites experienced predominantly moderate-severity fire, 38% burned at high severity, and no sites burned exclusively at low severity. The proportion of total tree and sapling establishment was significantly different among equal time periods based on a chi-square test, with highest tree and sapling establishment during the pre-fire-suppression period (1835-1919). Superposed epoch analysis revealed that fires burned during years of extreme drought (95% CI). The major pulse of tree establishment in the upper montane zone occurred during a multidecadal period of extreme drought conditions in the Colorado Front Range (1850-1889), during which 53% of the fires from the 1750-1989 period burned. In the upper montane zone of the Colorado Front Range, historical evidence suggests that these forests are resilient to prolonged periods of severe drought and associated severe fires.  相似文献   

10.
Abstract:  The bird species in western North America that are most restricted to, and therefore most dependent on, severely burned conifer forests during the first years following a fire event depend heavily on the abundant standing snags for perch sites, nest sites, and food resources. Thus, it is critical to develop and apply appropriate snag-management guidelines to implement postfire timber harvest operations in the same locations. Unfortunately, existing guidelines designed for green-tree forests cannot be applied to postfire salvage sales because the snag needs of snag-dependent species in burned forests are not at all similar to the snag needs of snag-dependent species in green-tree forests. Birds in burned forests have very different snag-retention needs from those cavity-nesting bird species that have served as the focus for the development of existing snag-management guidelines. Specifically, many postfire specialists use standing dead trees not only for nesting purposes but for feeding purposes as well. Woodpeckers, in particular, specialize on wood-boring beetle larvae that are superabundant in fire-killed trees for several years following severe fire. Species such as the Black-backed Woodpecker ( Picoides arcticus ) are nearly restricted in their habitat distribution to severely burned forests. Moreover, existing postfire salvage-logging studies reveal that most postfire specialist species are completely absent from burned forests that have been (even partially) salvage logged. I call for the long-overdue development and use of more meaningful snag-retention guidelines for postfire specialists, and I note that the biology of the most fire-dependent bird species suggests that even a cursory attempt to meet their snag needs would preclude postfire salvage logging in those severely burned conifer forests wherein the maintenance of biological diversity is deemed important.  相似文献   

11.
Lightning fire is the dominant natural disturbance of the western mixedwood boreal forest of North America. We quantified the independent effects of weather and forest composition on lightning fire initiation (a detected and recorded fire start) patterns in Alberta, Canada, to demonstrate how these biotic and abiotic components contribute to ecosystem dynamics in the mixedwood boreal forest. We used logistic regression to describe variation in annual initiation occurrence among 10,000-ha landscape units (voxels) covering a 9 million-ha study region over 11 years. At a voxel scale, forest composition explained more variation in annual initiation than did weather indices. Initiations occurred more frequently in landscapes with more conifer fuels (Picea spp.), and less in aspen-dominated (Populus spp.) ones. Initiations were less frequent in landscapes that had recently burned. Variation in initiation was also influenced by joint weather-lightning indices, but to a lesser degree. For each voxel, these indices quantified the number of days in the fire season when moisture levels were low and lightning was detected. Regional indices of fire weather severity explained substantial interannual variation of initiation, and the effect of forest composition was stronger in years with more severe fire weather. Our study is a conclusive demonstration of biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. The independent effects of forest composition emphasize that vegetation feedbacks strongly regulate disturbance dynamics in the region.  相似文献   

12.
Temporal variability of forest fires in eastern Amazonia   总被引:1,自引:0,他引:1  
Widespread occurrence of fires in Amazonian forests is known to be associated with extreme droughts, but historical data on the location and extent of forest fires are fundamental to determining the degree to which climate conditions and droughts have affected fire occurrence in the region. We used remote sensing to derive a 23-year time series of annual landscape-level burn scars in a fragmented forest of the eastern Amazon. Our burn scar data set is based on a new routine developed for the Carnegie Landsat Analysis System (CLAS), called CLAS-BURN, to calculate a physically based burn scar index (BSI) with an overall accuracy of 93% (Kappa coefficient 0.84). This index uses sub-pixel cover fractions of photosynthetic vegetation, non-photosynthetic vegetation, and shade/burn scar spectral end members. From 23 consecutive Landsat images processed with the CLAS-BURN algorithm, we quantified fire frequencies, the variation in fire return intervals, and rates of conversion of burned forest to other land uses in a 32 400 km2 area. From 1983 to 2007, 15% of the forest burned; 38% of these burned forests were subsequently deforested, representing 19% of the area cleared during the period of observation. While 72% of the fire-affected forest burned only once during the 23-year study period, 20% burned twice, 6% burned three times, and 2% burned four or more times, with the maximum of seven times. These frequencies suggest that the current fire return interval is 5-11 times more frequent than the estimated natural fire regime. Our results also quantify the substantial influence of climate and extreme droughts caused by a strong El Ni?o Southern Oscillation (ENSO) on the extent and likelihood of returning forest fires mainly in fragmented landscapes. These results are an important indication of the role of future warmer climate and deforestation in enhancing emissions from more frequently burned forests in the Amazon.  相似文献   

13.
Abstract:  The U.S. Fish and Wildlife Service's recent recovery plan for one of the most carefully watched threatened species worldwide, the Northern Spotted Owl (Strix occidentalis caurina), recommended a major departure in conservation strategies in the northwestern United States. Due to concern about fire, the plan would switch from a reserve to a no-reserve strategy in up to 52% of the owl's range. Fuel treatments (e.g., thinning) at regular intervals also would occur on up to 65–70% of dry forests in this area. Estimations of fire risk, however, were based on less than a decade of data and an anecdotal assessment of a single, large fire. We found that decadal data are inherently too short, given infrequent large fires, to accurately predict fire risk and trends. Rates of high-severity fire, based on remote-sensing data, are far lower than reported in the plan and in comparison with the rate of old-forest recruitment. In addition, over a 22-year period, there has been no increase in the proportion of high-severity fire. Our findings refute the key conclusions of the plan that are the basis for major changes in conservation strategies for the Spotted Owl. The best available science is needed to address these strategies in an adaptive-management framework. From the standpoint of fire risk, there appears to be ample time for research on fire and proposed treatment effects on Spotted Owls before designing extensive management actions or eliminating reserves.  相似文献   

14.
Correlations and cross-correlations between forest fires in the province of British Columbia, Canada, and sea surface temperatures in the Pacific Ocean were evaluated. British Columbia has a long Pacific Ocean coastline; given that there may be teleconnections between the province's forest fires and climate variability over the ocean, significant correlations may exist between forest fires and the sea surface temperature of the Pacific Ocean. Fire occurrences and areas burned through lightning-caused and human-caused fires were analyzed against individual 1° × 1° grid cells of anomalies in the sea surface temperature to determine correlations for the period 1950-2006. Significant correlations (p < 0.05) for vast areas of the ocean were found between occurrences of lightning-caused fires and sea surface temperature anomalies for time lags of 1 and 2 years, whereas significant correlations between occurrences of human-caused fires and sea surface temperature anomalies occurred extensively for many time lags. To support the results of this approach, correlations between fire data and the Niño 3.4, Pacific Decadal Oscillation, and Arctic Oscillation indices were tested for the same period. Significant correlations were found between fire occurrences and these indices at certain time lags. Overall, fire occurrence appeared to be more extensively correlated with sea surface temperature anomalies than was area burned. These results support the hypothesis that teleconnections exist between fire activity in British Columbia and sea surface temperatures in the Pacific Ocean, and the correlations suggest that linear regression models or other regression techniques may be appropriate for predicting fire severity from the sea surface temperatures of one or more previous years.  相似文献   

15.
16.
Morgan P  Heyerdahl EK  Gibson CE 《Ecology》2008,89(3):717-728
We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12,070,086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the 90th percentile in annual fire extent from 1900 to 2003 (>102,314 ha or approximately 1% of the fire atlas recording area), were concentrated early and late in the century (six from 1900 to 1934 and five from 1988 to 2003). During both periods, regional-fire years were ones when warm springs were followed by warm, dry summers and also when the Pacific Decadal Oscillation (PDO) was positive. Spring snowpack was likely reduced during warm springs and when PDO was positive, resulting in longer fire seasons. Regional-fire years did not vary with El Ni?o-Southern Oscillation (ENSO) or with climate in antecedent years. The long mid-20th century period lacking regional-fire years (1935-1987) had generally cool springs, generally negative PDO, and a lack of extremely dry summers; also, this was a period of active fire suppression. The climate drivers of regionally synchronous fire that we inferred are congruent with those of previous centuries in this region, suggesting a strong influence of spring and summer climate on fire activity throughout the 20th century despite major land-use change and fire suppression efforts. The relatively cool, moist climate during the mid-century gap in regional-fire years likely contributed to the success of fire suppression during that period. In every regional-fire year, fires burned across a range of vegetation types. Given our results and the projections for warmer springs and continued warm, dry summers, forests of the U.S. northern Rockies are likely to experience synchronous, large fires in the future.  相似文献   

17.
Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more "big pines" (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.  相似文献   

18.
Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions.  相似文献   

19.
DeLuca TH  Sala A 《Ecology》2006,87(10):2511-2522
Recurrent, low-severity fire in ponderosa pine (Pinus ponderosa)/interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests is thought to have directly influenced nitrogen (N) cycling and availability. However, no studies to date have investigated the influence of natural fire intervals on soil processes in undisturbed forests, thereby limiting our ability to understand ecological processes and successional dynamics in this important ecosystem of the Rocky Mountain West. Here, we tested the standing hypothesis that recurrent fire in ponderosa pine/Douglas-fir forests of the Inland Northwest decreases total soil N, but increases N turnover and nutrient availability. We compared soils in stands unburned over the past 69-130 years vs. stands exposed to two or more fires over the last 130 years at seven distinct locations in two wilderness areas. Mineral soil samples were collected from each of the seven sites in June and July of 2003 and analyzed for pH, total C and N, potentially mineralizable N (PMN), and extractable NH4+, NO3-, PO4(-3), Ca+2, Mg+2, and K+. Nitrogen transformations were assessed at five sites by installing ionic resin capsules in the mineral soil in August of 2003 and by conducting laboratory assays of nitrification potential and net nitrification in aerobic incubations. Total N and PMN decreased in stands subjected to multiple fires. This loss of total N and labile N was not reflected in concentrations of extractable NH4+ and NO3-. Rather, multiple fires caused an increase in NO3 sorbed on ionic resins, nitrification potential, and net nitrification in spite of the burned stands not having been exposed to fire for at least 12-17 years. Charcoal collected from a recent fire site and added to unburned soils increased nitrification potential, suggesting that the decrease of charcoal in the absence of fire may play an important role in N transformations in fire-dependent ecosystems in the long term. Interestingly, we found no consistent effect of fire frequency on extractable P or alkaline metal concentrations. Our results corroborate the largely untested hypothesis that frequent fire in ponderosa pine forests increases inorganic N availability in the long term and emphasize the need to study natural, unmanaged sites in far greater detail.  相似文献   

20.
Brown PM 《Ecology》2006,87(10):2500-2510
Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Ni?as, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Ni?o, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号