首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础理论   4篇
污染及防治   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2008年   2篇
排序方式: 共有5条查询结果,搜索用时 171 毫秒
1
1.
Non‐native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non‐native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non‐native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non‐native species; help disentangle which aspects of scientific debates about non‐native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio‐economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No‐Nativas  相似文献   
2.
Abstract: Human land uses surrounding protected areas provide propagules for colonization of these areas by non‐native species, and corridors between protected‐area networks and drainage systems of rivers provide pathways for long‐distance dispersal of non‐native species. Nevertheless, the influence of protected‐area boundaries on colonization of protected areas by invasive non‐native species is unknown. We drew on a spatially explicit data set of more than 27,000 non‐native plant presence records for South Africa's Kruger National Park to examine the role of boundaries in preventing colonization of protected areas by non‐native species. The number of records of non‐native invasive plants declined rapidly beyond 1500 m inside the park; thus, we believe that the park boundary limited the spread of non‐native plants. The number of non‐native invasive plants inside the park was a function of the amount of water runoff, density of major roads, and the presence of natural vegetation outside the park. Of the types of human‐induced disturbance, only the density of major roads outside the protected area significantly increased the number of non‐native plant records. Our findings suggest that the probability of incursion of invasive plants into protected areas can be quantified reliably.  相似文献   
3.
Organic and elemental carbon and a number of carboxylic acids and n-alkanes were measured in aerosol samples collected at three sites in the Ohio River Valley between October 1980 and August 1981. Approximately 100 filters were analyzed for organic and elemental carbon for each site. For the 11-month period organic and elemental carbon comprised about 19 percent of the total aerosol mass with about two-thirds of the carbon as organic. Regression analysis showed that the principal source of organic carbon was combustion. The measurements of the specific organic compounds indicated a weak biogenic component to the organic aerosol.  相似文献   
4.
Heyerdahl EK  Morgan P  Riser JP 《Ecology》2008,89(3):705-716
Our objective was to infer the climate drivers of regionally synchronous fire years in dry forests of the U.S. northern Rockies in Idaho and western Montana. During our analysis period (1650-1900), we reconstructed fires from 9245 fire scars on 576 trees (mostly ponderosa pine, Pinus ponderosa P. & C. Lawson) at 21 sites and compared them to existing tree-ring reconstructions of climate (temperature and the Palmer Drought Severity Index [PDSI]) and large-scale climate patterns that affect modern spring climate in this region (El Ni?o Southern Oscillation [ENSO] and the Pacific Decadal Oscillation [PDO]). We identified 32 regional-fire years as those with five or more sites with fire. Fires were remarkably widespread during such years, including one year (1748) in which fires were recorded at 10 sites across what are today seven national forests plus one site on state land. During regional-fire years, spring-summers were significantly warm and summers were significantly warm-dry whereas the opposite conditions prevailed during the 99 years when no fires were recorded at any of our sites (no-fire years). Climate in prior years was not significantly associated with regional- or no-fire years. Years when fire was recorded at only a few of our sites occurred under a broad range of climate conditions, highlighting the fact that the regional climate drivers of fire are most evident when fires are synchronized across a large area. No-fire years tended to occur during La Ni?a years, which tend to have anomalously deep snowpacks in this region. However, ENSO was not a significant driver of regional-fire years, consistent with the greater influence of La Ni?a than El Ni?o conditions on the spring climate of this region. PDO was not a significant driver of past fire, despite being a strong driver of modern spring climate and modern regional-fire years in the northern Rockies.  相似文献   
5.
Morgan P  Heyerdahl EK  Gibson CE 《Ecology》2008,89(3):717-728
We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12,070,086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the 90th percentile in annual fire extent from 1900 to 2003 (>102,314 ha or approximately 1% of the fire atlas recording area), were concentrated early and late in the century (six from 1900 to 1934 and five from 1988 to 2003). During both periods, regional-fire years were ones when warm springs were followed by warm, dry summers and also when the Pacific Decadal Oscillation (PDO) was positive. Spring snowpack was likely reduced during warm springs and when PDO was positive, resulting in longer fire seasons. Regional-fire years did not vary with El Ni?o-Southern Oscillation (ENSO) or with climate in antecedent years. The long mid-20th century period lacking regional-fire years (1935-1987) had generally cool springs, generally negative PDO, and a lack of extremely dry summers; also, this was a period of active fire suppression. The climate drivers of regionally synchronous fire that we inferred are congruent with those of previous centuries in this region, suggesting a strong influence of spring and summer climate on fire activity throughout the 20th century despite major land-use change and fire suppression efforts. The relatively cool, moist climate during the mid-century gap in regional-fire years likely contributed to the success of fire suppression during that period. In every regional-fire year, fires burned across a range of vegetation types. Given our results and the projections for warmer springs and continued warm, dry summers, forests of the U.S. northern Rockies are likely to experience synchronous, large fires in the future.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号