首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using network centrality measures to manage landscape connectivity   总被引:2,自引:0,他引:2  
We use a graph-theoretical landscape modeling approach to investigate how to identify central patches in the landscape as well as how these central patches influence (1) organism movement within the local neighborhood and (2) the dispersal of organisms beyond the local neighborhood. Organism movements were theoretically estimated based on the spatial configuration of the habitat patches in the studied landscape. We find that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity. Moreover, we identify (at least) two general classes of centrality. One accounts for the local flow of organisms in the neighborhood of a patch, and the other accounts for the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, we study how habitat patches with high scores on different network centrality measures are distributed in a fragmented agricultural landscape in Madagascar. Results show that patches with high degree and betweenness centrality are widely spread, while patches with high subgraph and closeness centrality are clumped together in dense clusters. This finding may enable multispecies analyses of single-species network models.  相似文献   

2.
Habitat loss and fragmentation can negatively influence population persistence and biodiversity, but the effects can be mitigated if species successfully disperse between isolated habitat patches. Network models are the primary tool for quantifying landscape connectivity, yet in practice, an overly simplistic view of species dispersal is applied. These models often ignore individual variation in dispersal ability under the assumption that all individuals move the same fixed distance with equal probability. We developed a modeling approach to address this problem. We incorporated dispersal kernels into network models to determine how individual variation in dispersal alters understanding of landscape-level connectivity and implemented our approach on a fragmented grassland landscape in Minnesota. Ignoring dispersal variation consistently overestimated a population's robustness to local extinctions and underestimated its robustness to local habitat loss. Furthermore, a simplified view of dispersal underestimated the amount of habitat substructure for small populations but overestimated habitat substructure for large populations. Our results demonstrate that considering biologically realistic dispersal alters understanding of landscape connectivity in ecological theory and conservation practice.  相似文献   

3.
Abstract:  Connectivity of habitat patches is thought to be important for movement of genes, individuals, populations, and species over multiple temporal and spatial scales. We used graph theory to characterize multiple aspects of landscape connectivity in a habitat network in the North Carolina Piedmont (U.S.A).. We compared this landscape with simulated networks with known topology, resistance to disturbance, and rate of movement. We introduced graph measures such as compartmentalization and clustering, which can be used to identify locations on the landscape that may be especially resilient to human development or areas that may be most suitable for conservation. Our analyses indicated that for songbirds the Piedmont habitat network was well connected. Furthermore, the habitat network had commonalities with planar networks, which exhibit slow movement, and scale-free networks, which are resistant to random disturbances. These results suggest that connectivity in the habitat network was high enough to prevent the negative consequences of isolation but not so high as to allow rapid spread of disease. Our graph-theory framework provided insight into regional and emergent global network properties in an intuitive and visual way and allowed us to make inferences about rates and paths of species movements and vulnerability to disturbance. This approach can be applied easily to assessing habitat connectivity in any fragmented or patchy landscape.  相似文献   

4.
Abstract: Climate change will likely have profound effects on cold‐water species of freshwater fishes. As temperatures rise, cold‐water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate‐driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate‐induced changes in summer thermal habitat for 3 cold‐water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.  相似文献   

5.
Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically prioritize areas for improvement of local habitat quality, with areas not meeting minimum thresholds being deemed inappropriate for pursuit of restoration activities.  相似文献   

6.
Akasaka M  Takamura N 《Ecology》2012,93(5):967-973
Connections between habitat patches can positively influence the number of species in respective patches, providing a basis for preferentially conserving interconnected patches. However, from a regional perspective, it is not known whether conserving multiple sets of interconnected habitat patches would include more species (i.e., show higher gamma diversity) than conserving multiple, unconnected, solitary patches. We studied aquatic macrophytes in 15 sets of unidirectionally interconnected ponds and 19 unconnected ponds and also tested whether alpha and beta diversity, expressed as the number of species and dissimilarity in species composition, respectively, differed between connected and unconnected ponds. We found that gamma diversity was higher in connected ponds than in unconnected ponds, even after controlling for surface area. This resulted from a higher alpha diversity in connected ponds, despite lower beta diversity. These results suggest that connections between habitat patches positively influence diversity at both local and regional scales. When the total surface area available for conservation is limited, interconnected habitat patches should be preferentially conserved.  相似文献   

7.
Recent studies emphasize the role of indirect relationships and feedback loops in maintaining ecosystem resilience. Environmental changes that impact on the organisms involved in these processes have the potential to initiate threshold responses and fundamentally shift the interactions within an ecosystem. However, empirical studies are hindered by the difficulty of designing appropriate manipulative experiments to capture this complexity. Here we employ structural equation modeling to define and test the architecture of ecosystem interaction networks. Using survey data from 19 estuaries we investigate the interactions between biological (abundance of large bioturbating macrofauna, microphytobenthos, and detrital matter) and physical (sediment grain size) processes. We assess the potential for abrupt changes in the architecture of the network and the strength of interactions to occur across environmental gradients. Our analysis identified a potential threshold in the relationship between sediment mud content and benthic chlorophyll a, at -12 microg/g, using quantile regression. Below this threshold, the interaction network involved different variables and fewer feedbacks than above. This approach has potential to improve our empirical understanding of thresholds in ecological systems and our ability to design manipulative experiments that test how and when a threshold will be passed. It can also be used to indicate to resource managers that a particular system has the potential to exhibit threshold responses to environmental change, emphasizing precautionary management and facilitating a better understanding of how persistent multiple stressors threaten the resilience and long-term use of natural ecosystems.  相似文献   

8.
Connectivity for conservation: a framework to classify network measures   总被引:3,自引:0,他引:3  
Rayfield B  Fortin MJ  Fall A 《Ecology》2011,92(4):847-858
Graph theory, network theory, and circuit theory are increasingly being used to quantify multiple aspects of habitat connectivity and protected areas. There has been an explosive proliferation of network (connectivity) measures, resulting in over 60 measures for ecologists to now choose from. Conceptual clarification on the ecological meaning of these network measures and their interrelationships is overdue. We present a framework that categorizes network measures based on the connectivity property that they quantify (i.e., route-specific flux, route redundancy, route vulnerability, and connected habitat area) and the structural level of the habitat network to which they apply. The framework reveals a lack of network measures in the categories of "route-specific flux among neighboring habitat patches" and "route redundancy at the level of network components." We propose that network motif and path redundancy measures can be developed to fill the gaps in these categories. The value of this framework lies in its ability to inform the selection and application of network measures. Ultimately, it will allow a better comparison among graph, network, and circuit analyses, which will improve the design and management of connected landscapes.  相似文献   

9.
10.
Ecological theory predicts that incorporating habitat heterogeneity into restoration sites should enhance diversity and key functions, yet research is limited on how topographic heterogeneity affects higher trophic levels. Our large (8-ha) southern California restoration experiment tested effects of tidal creek networks and pools on trophic structure of salt marsh habitat and high-tide use by two regionally dominant fish species, California killifish (Fundulus parvipinnis) and longjaw mudsucker (Gillichthys mirabilis). We expected tidal creeks to function as "conduits" that would enhance connectivity between subtidal and intertidal habitat and pools to serve as microhabitat "oases" for fishes. Pools did provide abundant invertebrate prey and were a preferred microhabitat for F. parvipinnis, even when the entire marsh was inundated (catch rates were 61% higher in pools). However, G. mirabilis showed no preference for pools. At a larger scale, effects of tidal creek networks were also mixed. Areas containing creeks had 12% higher catch rates of G. mirabilis, but lower catch rates and feeding rates of F. parvipinnis. Collectively, the results indicate that restoring multiple forms of heterogeneity is required to provide opportunities for multiple target consumers.  相似文献   

11.
Pringle RM 《Ecology》2008,89(1):26-33
Ecologists increasingly recognize the ability of certain species to influence ecological processes by engineering the physical environment, but efforts to develop a predictive understanding of this phenomenon are in their early stages. While many believe that the landscape-scale effects of ecosystem engineers will be to increase habitat diversity and therefore the abundance and richness of other species, few generalities exist about the effects of engineering at the scale of the engineered patch. According to one hypothesis, activities that increase structural habitat complexity within engineered patches will have positive effects on the abundance or diversity of other organisms. Here I show that, by damaging trees and increasing their structural complexity, browsing elephants create refuges used by a common arboreal lizard. Observational surveys and a lizard transplant experiment revealed that lizards preferentially occupy trees with real or simulated elephant damage. A second experiment showed that lizards vacate trees when elephant-engineered refuges are removed. Furthermore, local lizard densities increased with (and may be constrained by) local densities of elephant-damaged trees. This facilitative effect of elephants upon lizards via patch-scale habitat modification runs contrary to previously documented negative effects of the entire ungulate guild on lizards at the landscape scale, suggesting that net indirect effects of large herbivores comprise opposing trophic and engineering interactions operating at different spatial scales. Such powerful megaherbivore-initiated interactions suggest that anthropogenic changes in large-mammal densities will have important cascading consequences for ecological communities.  相似文献   

12.
Habitat heterogeneity can generate intraspecific diversity through local adaptation of populations. While it is becoming increasingly clear that population diversity can increase stability in species abundance, less is known about how population diversity can benefit consumers that can integrate across population diversity in their prey. Here we demonstrate cascading effects of thermal heterogeneity on trout-salmon interactions in streams where rainbow trout rely heavily on the seasonal availability of anadromous salmon eggs. Water temperature in an Alaskan stream varied spatially from 5 degrees C to 17.5 degrees C, and spawning sockeye salmon showed population differentiation associated with this thermal heterogeneity. Individuals that spawned early in cool regions of the 5 km long stream were genetically differentiated from those spawning in warmer regions later in the season. Sockeye salmon spawning generates a pulsed resource subsidy that supports the majority of seasonal growth in stream-dwelling rainbow trout. The spatial and temporal structuring of sockeye salmon spawn timing in our focal stream extended the duration of the pulsed subsidy compared to a thermally homogeneous stream with a single population of salmon. Further, rainbow trout adopted movement strategies that exploited the multiple pulses of egg subsidies in the thermally heterogeneous stream. Fish that moved to track the resource pulse grew at rates about 2.5 times higher than those that remained stationary or trout in the reference stream with a single seasonal pulse of eggs. Our results demonstrate that habitat heterogeneity can have important effects on the population diversity of dominant species, and in turn, influence their value to species that prey upon them. Therefore, habitat homogenization may have farther-reaching ecological effects than previously considered.  相似文献   

13.
Abstract: Habitat fragmentation and the division of populations into spatially separated units have led to the increasing use of metapopulation models to characterize these populations. One prominent model that has served as a heuristic tool was introduced by Levins and is based on a collection of simplifying assumptions that exclude information on the dynamics and spatial distribution of local populations. Levins's and similar models predict the proportion of occupied habitat patches at equilibrium and the conditions needed to avoid total extinction. There are many obvious concerns about using such models, including how realistic alterations might change the predictions and whether occupancy has any relationship to population-level processes. Although many of the assumptions of these simple models are known to be unrealistic, we do not know how the assumptions affect model predictions. We simulated a metapopulation, and our results show that assumptions such as homogeneity of habitat patches, random migration among patches, equivalent extinction probabilities in all patches, and a large number of patches can lead to large overestimations of habitat occupancy. But when we explicitly modeled the underlying population dynamics within each patch, we found (1) that there was a strong correlation between proportion of occupied patches and total metapopulation size and (2) that the distribution of individuals among patches was relatively insensitive to model assumptions. Thus, our results show that although realistic modifications will change model predictions for occupancy, occupancy and population trends will be correlated. These correlations between occupancy and population size suggest that occupancy models may have some utility in conservation applications.  相似文献   

14.
The isolation of habitat patches is often cited as having a major impact on the dynamics of small populations occupying patches in a complex landscape. Few studies, however, have provided field data demonstrating that isolation has an identifiable effect on specific populations independent of other factors such as local habitat quality or that landscape factors such as corridors can alleviate such effects. We conducted field surveys of Bachman's Sparrow ( Aimophila aestivalis ) populations in regions, which we call linear landscapes, where suitable habitat patches were isolated to varying degrees from potential sources of dispersing birds. In these linear landscapes, isolated patches of habitat were less likely to be colonized than were nonisolated patches. We also found that corridor configurations of habitat patches improved the ability of sparrows to find and settle in newly created patches. These results suggest that, for species that do not disperse easily through inhospitable landscapes, habitat occupancy at a regional scale can be enhanced by careful landscape design and planning.  相似文献   

15.
Ecological interaction networks are a valuable approach to understanding plant-pollinator interactions at the community level. Highly structured daily activity patterns are a feature of the biology of many flower visitors, particularly provisioning female bees, which often visit different floral sources at different times. Such temporal structure implies that presence/absence and relative abundance of specific flower-visitor interactions (links) in interaction networks may be highly sensitive to the daily timing of data collection. Further, relative timing of interactions is central to their possible role in competition or facilitation of seed set among coflowering plants sharing pollinators. To date, however, no study has examined the network impacts of daily temporal variation in visitor activity at a community scale. Here we use temporally structured sampling to examine the consequences of daily activity patterns upon network properties using fully quantified flower-visitor interaction data for a Kenyan savanna habitat. Interactions were sampled at four sequential three-hour time intervals between 06:00 and 18:00, across multiple seasonal time points for two sampling sites. In all data sets the richness and relative abundance of links depended critically on when during the day visitation was observed. Permutation-based null modeling revealed significant temporal structure across daily time intervals at three of the four seasonal time points, driven primarily by patterns in bee activity. This sensitivity of network structure shows the need to consider daily time in network sampling design, both to maximize the probability of sampling links relevant to plant reproductive success and to facilitate appropriate interpretation of interspecific relationships. Our data also suggest that daily structuring at a community level could reduce indirect competitive interactions when coflowering plants share pollinators, as is commonly observed during flowering in highly seasonal habitats.  相似文献   

16.
Patrick DA  Harper EB  Hunter ML  Calhoun AJ 《Ecology》2008,89(9):2563-2574
To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats may generate extremely high densities of animals, resulting in high density-dependent mortality.  相似文献   

17.
Ryall KL  Fahrig L 《Ecology》2006,87(5):1086-1093
Despite extensive empirical research and previous reviews, no clear patterns regarding the effects of habitat loss and fragmentation on predator-prey interactions have emerged. We suggest that this is because empirical researchers do not design their studies to test specific hypotheses arising from the theoretical literature. In fact, theoretical work is almost completely ignored by empirical researchers, perhaps because it may be inaccessible to them. The purpose of this paper is to review theoretical work on the effects of habitat loss and fragmentation on predator-prey interactions. We provide a summary of clear, testable theoretical predictions for empirical researchers. To test one or more of these predictions, an empiricist will need certain information on the predator and prey species of interest. This includes: (1) whether the predator is a specialist on one prey species or feeds on many kinds of prey (omnivore and generalist); (2) whether the predator is restricted to the same habitat type as the focal prey (specialist), can use a variety of habitats but has higher survival in the prey habitat (omnivore), or lives primarily outside of the focal prey's habitat (generalist); (3) whether prey-only patches have lower prey extinction rates than predator-prey patches; and (4) whether the prey emigrate at higher rates from predator-prey patches than from prey-only patches. Empiricists also need to be clear on whether they are testing a prediction about habitat loss or habitat fragmentation and need to conduct empirical studies at spatial scales appropriate for testing the theoretical prediction(s). We suggest that appropriate use of the theoretical predictions in future empirical research will resolve the apparent inconsistencies in the empirical literature on this topic.  相似文献   

18.
A growing number of programs seek to facilitate species conservation using incentive-based mechanisms. Recently, a market-based incentive program for the federally endangered Golden-cheeked Warbler (Dendroica chrysoparia) was implemented on a trial basis at Fort Hood, an Army training post in Texas, USA. Under this program, recovery credits accumulated by Fort Hood through contracts with private landowners are used to offset unintentional loss of breeding habitat of Golden-cheeked Warblers within the installation. Critical to successful implementation of such programs is the ability to value, in terms of changes to overall species viability, both habitat loss and habitat restoration or protection. In this study, we sought to answer two fundamental questions: Given the same amount of change in breeding habitat, does the change in some patches have a greater effect on metapopulation persistence than others? And if so, can characteristics of a patch (e.g., size or spatial location) be used to predict how the metapopulation will respond to these changes? To answer these questions, we describe an approach for using sensitivity analysis of a metapopulation projection model to predict how changes to specific habitat patches would affect species viability. We used a stochastic, discrete-time projection model based on stage-specific estimates of survival and fecundity, as well as various assumptions about dispersal among populations. To assess a particular patch's leverage, we quantified how much metapopulation viability was expected to change in response to changing the size of that patch. We then related original patch size and distance from the largest patch to each patch's leverage to determine if general patch characteristics could be used to develop guidelines for valuing changes to patches within a metapopulation. We found that both the characteristic that best predicted patch leverage and the magnitude of the relationship changed under different model scenarios. Thus, we were unable to find a consistent set of relationships, and therefore we emphasize the dangers in relying on general guidelines to assess patch value. Instead, we provide an approach that can be used to quantitatively evaluate patch value and identify critical needs for future research.  相似文献   

19.
Conservation of Fragmented Populations   总被引:38,自引:0,他引:38  
In this paper we argue that landscape spatial structure is of central importance in understanding the effects of fragmentation on population survival. Landscape spatial structure is the spatial relationships among habitat patches and the matrix in which they are embedded. Many general models of subdivided populations make the assumptions that (1) all habitat patches are equivalent in size and quality and (2) all local populations (in the patches) are equally accessible by dispersers. Models that gloss over spatial details of landscape structure can be useful for theoretical developments but will almost always be misleading when applied to real-world conservation problems. We show that local extinctions of fragmented populations are common. From this it follows that recolonization of local extinctions is critical for regional survival of fragmented populations. The probability of recolonization depends on (1) spatial relationships among landscape elements used by the population, including habitat patches for breeding and elements of the inter-patch matrix through which dispersers move, (2) dispersal characteristics of the organism of interest, and (3) temporal changes in the landscape structure. For endangered species, which are typically restricted in their dispersal range and in the kinds of habitat through which they can disperse, these factors are of primary importance and must be explicitly considered in management decisions.  相似文献   

20.
《Ecological modelling》2005,181(4):445-459
Spatially explicit simulation models of varying degree of complexity are increasingly used in landscape and species management and conservation. The choice as to which type of model to employ in a particular situation, is however, far too often governed by logistic constraints and the personal preferences of the modeller, rather than by a critical evaluation of model performance. We present a comparison of three common spatial simulation approaches (patch-based incidence-function model (IFM), individual-based movement model (IBMM), individual-based population model including detailed behaviour and demographics (IBPM)). The IBPM was analysed in two versions (IBPM_st and IBPM_dyn). Both assumed spatial heterogeneity of the matrix, but the IBPM_dyn in addition included temporal matrix dynamics. The models were developed with a shared minimum objective, namely to predict dynamics of individuals or populations in space given a specific configuration of habitat patches. We evaluated how the choice of model influenced predictions regarding the effect of patch and corridor configuration on dispersal probabilities and the number of successful immigrants of a simulated small mammal. Model results were analysed both at the level of the entire habitat network and at the level of individual patches.All models produced similar rankings of alternative habitat networks, but large discrepancies existed between absolute estimates of dispersal probabilities and the number of successful immigrants predicted by the different models. Generally, predicted dispersal probabilities were highest in the IBMM, intermediate in the IFM and the IBPM_st and lowest in the IBPM_dyn. Observed differences were due both to differences in implementation (e.g. raster versus vector-based movement algorithms), the chosen level of detail in landscape representation (e.g. matrix complexity) and the degree of behavioural realism included in the models (e.g. demography, differentiated mortality).The advantages and disadvantages of the three modelling approaches are discussed, as are the implications of the results for the recommended use of the three types of models in practical management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号