首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined features of citizen science that influence data quality, inferential power, and usefulness in ecology. As background context for our examination, we considered topics such as ecological sampling (probability based, purposive, opportunistic), linkage between sampling technique and statistical inference (design based, model based), and scientific paradigms (confirmatory, exploratory). We distinguished several types of citizen science investigations, from intensive research with rigorous protocols targeting clearly articulated questions to mass-participation internet-based projects with opportunistic data collection lacking sampling design, and examined overarching objectives, design, analysis, volunteer training, and performance. We identified key features that influence data quality: project objectives, design and analysis, and volunteer training and performance. Projects with good designs, trained volunteers, and professional oversight can meet statistical criteria to produce high-quality data with strong inferential power and therefore are well suited for ecological research objectives. Projects with opportunistic data collection, little or no sampling design, and minimal volunteer training are better suited for general objectives related to public education or data exploration because reliable statistical estimation can be difficult or impossible. In some cases, statistically robust analytical methods, external data, or both may increase the inferential power of certain opportunistically collected data. Ecological management, especially by government agencies, frequently requires data suitable for reliable inference. With standardized protocols, state-of-the-art analytical methods, and well-supervised programs, citizen science can make valuable contributions to conservation by increasing the scope of species monitoring efforts. Data quality can be improved by adhering to basic principles of data collection and analysis, designing studies to provide the data quality required, and including suitable statistical expertise, thereby strengthening the science aspect of citizen science and enhancing acceptance by the scientific community and decision makers.  相似文献   

2.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   

3.
Ladybirds (Coleoptera: Coccinellidae) provide services that are critical to food production, and they fulfill an ecological role as a food source for predators. The richness, abundance, and distribution of ladybirds, however, are compromised by many anthropogenic threats. Meanwhile, a lack of knowledge of the conservation status of most species and the factors driving their population dynamics hinders the development and implementation of conservation strategies for ladybirds. We conducted a review of the literature on the ecology, diversity, and conservation of ladybirds to identify their key ecological threats. Ladybird populations are most affected by climate factors, landscape composition, and biological invasions. We suggest mitigating actions for ladybird conservation and recovery. Short-term actions include citizen science programs and education, protective measures for habitat recovery and threatened species, prevention of the introduction of non-native species, and the maintenance and restoration of natural areas and landscape heterogeneity. Mid-term actions involve the analysis of data from monitoring programs and insect collections to disentangle the effect of different threats to ladybird populations, understand habitat use by taxa on which there is limited knowledge, and quantify temporal trends of abundance, diversity, and biomass along a management-intensity gradient. Long-term actions include the development of a worldwide monitoring program based on standardized sampling to fill data gaps, increase explanatory power, streamline analyses, and facilitate global collaborations.  相似文献   

4.
Citizen science may be especially effective in urban landscapes due to the large pool of potential volunteers. However, there have been few evaluations of the contributions of citizen scientists to knowledge of biological communities in and around cities. To assess the effectiveness of citizen scientists' monitoring of species in urban areas, we compared butterfly data collected over 10 years in Chicago, Illinois (U.S.A.), and New York City, New York (U.S.A.). The dates, locations, and methods of data collection in Chicago were standardized, whereas data from New York were collected at any location at any time. For each city, we evaluated whether the number of observers, observation days (days on which observations were reported), and sampling locations were associated with the reported proportion of the estimated regional pool of butterfly species. We also compared the number of volunteers, duration of volunteer involvement, and consistency of sampling efforts at individual locations within each city over time. From 2001 to 2010, there were 73 volunteers in Chicago and 89 in New York. During this period, volunteers observed 86% and 89% of the estimated number of butterfly species present in Chicago and New York, respectively. Volunteers in New York reported a greater proportion of the estimated pool of butterfly species per year. In addition, more species were observed per volunteer and observation day in New York, largely due to the unrestricted sampling season in New York. Chicago volunteers were active for more years and monitored individual locations more consistently over time than volunteers in New York. Differences in monitoring protocol--especially length of sampling season and selection protocol for monitoring locations--influenced the relationship between species accrual and sampling effort, which suggests these factors are important in volunteer-based species-monitoring programs.  相似文献   

5.
Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species‐rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen‐science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen‐science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model‐averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site‐abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework. El Uso de Monitoreos Acústicos a Gran Escala para Estudiar las Presiones Antropogénicas sobre Comunidades de Orthoptera  相似文献   

6.
Anthropogenic impacts have reduced natural areas but increased the area of anthropogenic landscapes. There is debate about whether anthropogenic landscapes (e.g., farmlands, orchards, and fish ponds) provide alternatives to natural habitat and under what circumstances. We considered whether anthropogenic landscapes can mitigate population declines for waterbirds. We collected data on population trends and biological traits of 1203 populations of 579 species across the planet. Using Bayesian generalized linear mixed models, we tested whether the ability of a species to use an anthropogenic landscape can predict population trends of waterbird globally and of species of conservation concern. Anthropogenic landscapes benefited population maintenance of common but not less-common species. Conversely, the use of anthropogenic landscapes was associated with population declines for threatened species. Our findings delineate some limitations to the ability of anthropogenic landscapes to mitigate population declines, suggesting that the maintenance of global waterbird populations depends on protecting remaining natural areas and improving the habitat quality in anthropogenic landscapes. Article impact statement: Protecting natural areas and improving the quality of anthropogenic landscapes as habitat are both needed to achieve effective conservation.  相似文献   

7.
Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual‐based learning, stresses collaborative and generative insight making and is well‐suited for adaptive management. Adaptive‐management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real‐time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case‐study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy‐in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning.  相似文献   

8.
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear‐cut guidance on how genetic features can be incorporated into conservation‐planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation‐priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected‐area networks that appropriately preserve community‐level evolutionary patterns.  相似文献   

9.
Citizen scientists are increasingly engaged in gathering biodiversity information, but trade‐offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011–2014) of a short‐duration citizen science project (Big Butterfly Count [BBC]) with those from long‐running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3‐week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3‐week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short‐duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species’ flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass‐participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass‐participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land‐use types), as well as serving to reconnect an increasingly urban human population with nature.  相似文献   

10.
As landscapes continue to fall under human influence through habitat loss and fragmentation, fencing is increasingly being used to mitigate anthropogenic threats and enhance the commercial value of wildlife. Subsequent intensification of management potentially erodes wildness by disembodying populations from landscape-level processes, thereby disconnecting species from natural selection. Tools are needed to measure the degree to which populations of large vertebrate species in formally protected and privately owned wildlife areas are self-sustaining and free to adapt. We devised a framework to measure such wildness based on 6 attributes relating to the evolutionary and ecological dynamics of vertebrates (space, disease and parasite resistance, exposure to predation, exposure to limitations and fluctuations of food and water supply, and reproduction). For each attribute, we set empirical, species-specific thresholds between 5 wildness states based on quantifiable management interventions. We analysed data from 205 private wildlife properties with management objectives spanning ecotourism to consumptive utilization to test the framework on 6 herbivore species representing a range of conservation statuses and commercial values. Wildness scores among species differed significantly, and the proportion of populations identified as wild ranged from 12% to 84%, which indicates the tool detected site-scale differences both among populations of different species and populations of the same species under different management regimes. By quantifying wildness, this framework provides practitioners with standardized measurement units that link biodiversity with the sustainable use of wildlife. Applications include informing species management plans at local scales; standardizing the inclusion of managed populations in red-list assessments; and providing a platform for certification and regulation of wildlife-based economies. Applying this framework may help embed wildness as a normative value in policy and mitigate the shifting baseline of what it means to truly conserve a species.  相似文献   

11.
Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza‐Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land‐use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon‐dense (domed pole forest) areas. New carbon‐based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development.  相似文献   

12.
Although Africa has many threatened species and biological hot spots, there are few citizen science schemes, particularly in rural communities, and there has been limited evaluation of existing programs. We engaged traditional Maasai warriors (pastoralist men aged 15 to 35) in community‐based conservation and demographic monitoring of a persecuted African lion (Panthera leo) population. Through direct engagement, we investigated whether a citizen science approach employing local warriors, who had no formal education, could produce reliable data on the demographics, predation, and movements of a species with which their communities have been in conflict for generations. Warriors were given benefits such as literacy training and skill enhancement and engaged in the monitoring of the lions. The trained warriors reported on lion sign across an area nearly 4000 km2. Scientists worked together with the warriors to verify their reports and gather observations on the lion population. Using the verified reports and collected observations, we examined our scientific knowledge relative to the lion population preceding and during the citizen science program. Our observations showed that data quality and quantity improved with the involvement and training of the participants. Furthermore, because they engaged in conservation and gained personal benefits, the participants came to appreciate a species that was traditionally their foe. We believe engaging other local communities in biodiversity conservation and monitoring may be an effective conservation approach in rural Africa.  相似文献   

13.
Environmental education strategies have customarily placed substantial focus on enhancing ecological knowledge and literacy with the hope that, upon discovering relevant facts and concepts, participants will be better equipped to process and dissect environmental issues and, therefore, make more informed decisions. The assumption is that informed citizens will become active citizens––enthusiastically lobbying for, and participating in, conservation‐oriented action. We surveyed and interviewed and used performance data from 432 participants in the Coastal Observation and Seabird Survey Team (COASST), a scientifically rigorous citizen science program, to explore measurable change in and links between understanding and action. We found that participation in rigorous citizen science was associated with significant increases in participant knowledge and skills; a greater connection to place and, secondarily, to community; and an increasing awareness of the relative impact of anthropogenic activities on local ecosystems specifically through increasing scientific understanding of the ecosystem and factors affecting it. Our results suggest that a place‐based, data‐rich experience linked explicitly to local, regional, and global issues can lead to measurable change in individual and collective action, expressed in our case study principally through participation in citizen science and community action and communication of program results to personal acquaintances and elected officials. We propose the following tenets of conservation literacy based on emergent themes and the connections between them explicit in our data: place‐based learning creates personal meaning making; individual experience nested within collective (i.e., program‐wide) experience facilitates an understanding of the ecosystem process and function at local and regional scales; and science‐based meaning making creates informed concern (i.e., the ability to discern both natural and anthropogenic forcing), which allows individuals to develop a personalized prioritization schema and engage in conservation action.  相似文献   

14.
Most countries have many pieces of legislation that govern biodiversity, including a range of criminal, administrative, and civil law provisions that state how wildlife must be legally used, managed, and protected. However, related debates in conservation, such as about enforcement, often overlook the details within national legislation that define which specific acts are illegal, the conditions under which laws apply, and how they are sanctioned. Based on a review of 90 wildlife laws in 8 high-biodiversity countries with different legal systems, we developed a taxonomy that describes all types of wildlife offenses in those countries. The 511 offenses are organized into a hierarchical taxonomy that scholars and practitioners can use to help conduct legal analyses. This is significant amidst competing calls to strengthen, deregulate, and reform wildlife legislation, particularly in response to fears over zoonotic threats and large-scale biodiversity loss. It can be used to provide more nuance legal analyses and facilitate like-for-like comparisons across countries, informing processes to redraft conservation laws, review deregulation efforts, close loopholes, and harmonize legislation across jurisdictions. We applied the taxonomy in a comparison of sanctions in 8 countries for hunting a protected species. We found not only huge ranges in fines (US$0 to $200,000) and imprisonment terms (1.5 years to life imprisonment), but also fundamentally different approaches to designing sanctions for wildlife offenses. The taxonomy also illustrates how future legal taxonomies can be developed for other environmental issues (e.g., invasive species, protected areas).  相似文献   

15.
Natural‐resource managers and other conservation practitioners are under unprecedented pressure to categorize and quantify the vulnerability of natural systems based on assessment of the exposure, sensitivity, and adaptive capacity of species to climate change. Despite the urgent need for these assessments, neither the theoretical basis of adaptive capacity nor the practical issues underlying its quantification has been articulated in a manner that is directly applicable to natural‐resource management. Both are critical for researchers, managers, and other conservation practitioners to develop reliable strategies for assessing adaptive capacity. Drawing from principles of classical and contemporary research and examples from terrestrial, marine, plant, and animal systems, we examined broadly the theory behind the concept of adaptive capacity. We then considered how interdisciplinary, trait‐ and triage‐based approaches encompassing the oft‐overlooked interactions among components of adaptive capacity can be used to identify species and populations likely to have higher (or lower) adaptive capacity. We identified the challenges and value of such endeavors and argue for a concerted interdisciplinary research approach that combines ecology, ecological genetics, and eco‐physiology to reflect the interacting components of adaptive capacity. We aimed to provide a basis for constructive discussion between natural‐resource managers and researchers, discussions urgently needed to identify research directions that will deliver answers to real‐world questions facing resource managers, other conservation practitioners, and policy makers. Directing research to both seek general patterns and identify ways to facilitate adaptive capacity of key species and populations within species, will enable conservation ecologists and resource managers to maximize returns on research and management investment and arrive at novel and dynamic management and policy decisions.  相似文献   

16.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

17.
Amateur naturalists have played an important role in the study and conservation of nature since the 17th century. Today, naturalist groups make important contributions to bridge the gap between conservation science and practice around the world. We examined data from 2 regional naturalist programs to understand participant motivations, barriers, and perspectives as well as the actions they take to advance science, stewardship, and community engagement. These programs provide certification‐based natural history and conservation science training for adults that is followed by volunteer service in citizen science, education, and stewardship. Studies in California and Virginia include quantitative and qualitative evaluation data collected through pre‐ and postcourse surveys, interviews, and long‐term tracking of volunteer hours. Motivations of participants focused on learning about the local environment and plants and animals, connecting with nature, becoming certified, and spending time with people who have similar interests. Over half the participants surveyed were over 50 years old, two‐thirds were women, and a majority reported household incomes of over $50,000 (60% in California, 85% in Virginia), and <20% of those surveyed in both states described themselves as nonwhite. Thus, these programs need to improve participation by a wider spectrum of the public. We interviewed younger and underrepresented adults to examine barriers to participation in citizen science. The primary barrier was lack of time due to the need to work and focus on career advancement. Survey data revealed that participants’ ecological knowledge, scientific skills, and belief in their ability to address environmental issues increased after training. Documented conservation actions taken by the participants include invasive plant management, habitat restoration, and cleanups of natural areas and streams. Long‐term data from Virginia on volunteer hours dedicated to environmental citizen science show an increase from 14% in 2007 to 32% in 2014. In general, participants in the naturalist programs we examined increased their content knowledge about ecosystems, had greater confidence in conserving them, and continued to engage as citizen scientists after completing the program.  相似文献   

18.
Marine protected areas (MPAs) are key tools in addressing the global decline of sharks and rays, and marine parks and shark sanctuaries of various configurations have been established to conserve shark populations. However, assessments of their efficacy are compromised by inconsistent terminology, lack of standardized approaches to assess how MPAs contribute to shark and ray conservation, and ambiguity about how to integrate movement data in assessment processes. We devised a conceptual framework to standardize key terms (e.g., protection, contribution, potential impact, risk, threat) and used the concept of portfolio risk to identify key attributes of sharks and rays (assets), the threats they face (portfolio risk), and the specific role of MPAs in risk mitigation (insurance). Movement data can be integrated into the process by informing risk exposure and mitigation through MPAs. The framework is operationalized by posing 8 key questions that prompt practitioners to consider the assessment scope, MPA type and purpose, range of existing and potential threats, species biology and ecology, and management and operational contexts. Ultimately, MPA contributions to shark and ray conservation differ according to a complex set of human and natural factors and interactions that should be carefully considered in MPA design, implementation, and evaluation.  相似文献   

19.
Abstract: An essential foundation of any science is a standard lexicon. Any given conservation project can be described in terms of the biodiversity targets, direct threats, contributing factors at the project site, and the conservation actions that the project team is employing to change the situation. These common elements can be linked in a causal chain, which represents a theory of change about how the conservation actions are intended to bring about desired project outcomes. If project teams want to describe and share their work and learn from one another, they need a standard and precise lexicon to specifically describe each node along this chain. To date, there have been several independent efforts to develop standard classifications for the direct threats that affect biodiversity and the conservation actions required to counteract these threats. Recognizing that it is far more effective to have only one accepted global scheme, we merged these separate efforts into unified classifications of threats and actions, which we present here. Each classification is a hierarchical listing of terms and associated definitions. The classifications are comprehensive and exclusive at the upper levels of the hierarchy, expandable at the lower levels, and simple, consistent, and scalable at all levels. We tested these classifications by applying them post hoc to 1191 threatened bird species and 737 conservation projects. Almost all threats and actions could be assigned to the new classification systems, save for some cases lacking detailed information. Furthermore, the new classification systems provided an improved way of analyzing and comparing information across projects when compared with earlier systems. We believe that widespread adoption of these classifications will help practitioners more systematically identify threats and appropriate actions, managers to more efficiently set priorities and allocate resources, and most important, facilitate cross‐project learning and the development of a systematic science of conservation.  相似文献   

20.
Conservation requires successful outcomes. However, success is perceived in many different ways depending on the desired outcome. Through a questionnaire survey, we examined perceptions of success among 355 scientists and practitioners working on amphibian conservation from over 150 organizations in more than 50 countries. We also sought to identify how different types of conservation actions and respondent experience and background influenced perceptions. Respondents identified 4 types of success: species and habitat improvements (84% of respondents); effective program management (36%); outreach initiatives such as education and public engagement (25%); and the application of science‐based conservation (15%). The most significant factor influencing overall perceived success was reducing threats. Capacity building was rated least important. Perceptions were influenced by experience, professional affiliation, involvement in conservation practice, and country of residence. More experienced practitioners associated success with improvements to species and habitats and less so with education and engagement initiatives. Although science‐based conservation was rated as important, this factor declined in importance as the number of programs a respondent participated in increased, particularly among those from less economically developed countries. The ultimate measure of conservation success—population recovery—may be difficult to measure in many amphibians; difficult to relate to the conservation actions intended to drive it; and difficult to achieve within conventional funding time frames. The relaunched Amphibian Conservation Action Plan provides a framework for capturing lower level processes and outcomes, identifying gaps, and measuring progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号