首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
PFOS及其4种替代品对两栖动物非洲爪蟾和黑斑蛙蝌蚪的急性毒性结果为:用调聚法合成的织物三防整理剂对非洲爪蟾蝌蚪和黑斑蛙蝌蚪的96h-LC50分别为8和21mg·L-1,而PFOS对两种蝌蚪的96h-LC50分别为92和81mg·L-1。此实验结果说明织物三防整理剂的急性毒性高于PFOS。用电解氟化法合成的C4、C6织物三防整理剂和50%的全氟丁基有机铵盐阳离子表面活性剂浓度在100mg·L-1时,对两种蝌蚪都没有毒性。这说明,从急性毒性的角度,C4、C6织物三防整理剂和表面活性剂可作为PFOS的替代品使用,但是织物三防整理剂的急性毒性比PFOS大,作为替代品使用应慎重考虑。另外,PFOS和织物三防整理剂对黑斑蛙蝌蚪的急性毒性与对非洲爪蟾蝌蚪的急性毒性存在差异。出于保护我国本土两栖动物的目的,使用黑斑蛙开展毒性评价比使用非洲爪蟾更有现实意义。  相似文献   

2.
异噻唑啉酮类杀菌剂1,2-苯并异噻唑-3-酮(BIT)和甲基异噻唑啉酮(MIT)虽已在多种行业中广泛使用,但目前有关其毒性尤其对水体中生物毒性的数据还较少。鉴于BIT和 MIT在水体中普遍存在,本文研究了这两种污染物对两栖动物黑斑蛙胚胎和蝌蚪的急性毒性。黑斑蛙胚胎和蝌蚪分别暴露系列浓度的BIT和 MIT,观察化学品对其生长、发育和运动的影响,计算96小时半数致死浓度(96 h-LC50)和96小时半数致畸浓度(96 h-TC50),确定最小生长抑制浓度(MCIG)。结果发现,BIT对黑斑蛙胚胎的96 h-LC50和96 h-TC50分别为2.99 mg?L-1和0.60 mg?L-1,MCIG小于0.40 mg?L-1,对蝌蚪的96 h-LC50为6.44 mg?L-1。MIT对黑斑蛙胚胎的96 h-LC50和96 h-TC50分别为5.30 mg?L-1和2.36 mg?L-1,MCIG为2.59 mg?L-1,对蝌蚪的96 h-LC50为7.58 mg?L-1。根据《化学农药环境安全评价准则报批稿》中两栖动物蝌蚪急性毒性的分级标准,判定BIT和MIT的毒性等级为中等。该毒性数据为异噻唑啉酮类杀菌剂的环境管理提供参考。  相似文献   

3.
异噻唑啉酮类杀菌剂1,2-苯并异噻唑-3-酮(BIT)和甲基异噻唑啉酮(MIT)虽已在多种行业中广泛使用,但目前有关其毒性尤其对水体中生物毒性的数据还较少。鉴于BIT和 MIT在水体中普遍存在,本文研究了这两种污染物对两栖动物黑斑蛙胚胎和蝌蚪的急性毒性。黑斑蛙胚胎和蝌蚪分别暴露系列浓度的BIT和 MIT,观察化学品对其生长、发育和运动的影响,计算96小时半数致死浓度(96 h-LC50)和96小时半数致畸浓度(96 h-TC50),确定最小生长抑制浓度(MCIG)。结果发现,BIT对黑斑蛙胚胎的96 h-LC50和96 h-TC50分别为2.99 mg?L-1和0.60 mg?L-1,MCIG小于0.40 mg?L-1,对蝌蚪的96 h-LC50为6.44 mg?L-1。MIT对黑斑蛙胚胎的96 h-LC50和96 h-TC50分别为5.30 mg?L-1和2.36 mg?L-1,MCIG为2.59 mg?L-1,对蝌蚪的96 h-LC50为7.58 mg?L-1。根据《化学农药环境安全评价准则报批稿》中两栖动物蝌蚪急性毒性的分级标准,判定BIT和MIT的毒性等级为中等。该毒性数据为异噻唑啉酮类杀菌剂的环境管理提供参考。  相似文献   

4.
敌百虫对中国林蛙蝌蚪生长发育的毒性效应   总被引:1,自引:0,他引:1  
为评价水域环境中敌百虫(trichlorfon)污染对两栖类幼体的急性毒性,将中国林蛙(Rana chensinensis)28~29期(Gos-ner)蝌蚪分别暴露于10~30 mg· L-1敌百虫5个不同浓度的水体中,分别在24、48、72和96 h统计蝌蚪的死亡率,计算半致死浓度(LC50).结果显示,暴露24、48、72和96 h,敌百虫对蝌蚪的LC50分别为14250±3.23、49.19±128、25.68±2.04、1555±1.93 mg·L-1,安全浓度(SC)为156±0.19 mg· L-1.蝌蚪中毒后尾部多呈弯曲状,仰翻,外观浮肿.对死亡蝌蚪的解剖表明,其鳃腔内充水,内鳃萎缩,肝脏、肠管和肾脏呈灰白色.另外,将28~29期蝌蚪分别暴露于0.2 ~ 2.0 mg·L-1敌百虫4个不同浓度的水体中进行慢性暴露实验,检测蝌蚪暴露28和42 d时的体重和体长以及75%个体变态所需的时间.结果表明,蝌蚪在低剂量敌百虫水体中持续暴露,其生长发育受到明显抑制,并可导致蝌蚪身体扭曲、尾部强直性弯曲等畸型发生,蝌蚪的死亡率显著增高,作用强度呈现剂量和时间的累积效应.慢性暴露实验证明SC以下的敌百虫水体仍威胁着蝌蚪的生存.  相似文献   

5.
两栖动物蝌蚪急性毒性试验是评价化学品急性毒性的一种方法。以毒死蜱、乙草胺、重铬酸钾和全氟辛烷磺酸盐(PFOS)为测试物,比较了我国本土黑斑蛙(Rana nigromaculata)与国际通用种非洲爪蟾(Xenopus laevis)在蝌蚪急性毒性试验中的敏感性。结果发现:2类蝌蚪分别进行的11次试验中,空白对照组黑斑蛙蝌蚪死亡率(0.9%)远低于非洲爪蟾蝌蚪的死亡率(5.8%);重铬酸钾和PFOS对黑斑蛙蝌蚪的96 h-LC50分别为34.0 mg·L-1和81.0 mg·L-1,而对非洲爪蟾蝌蚪的96 h-LC50分别为51.6 mg·L-1和92.1 mg·L-1,显示黑斑蛙蝌蚪对这2种化学品的敏感性略高于非洲爪蟾蝌蚪;毒死蜱和乙草胺对黑斑蛙蝌蚪的96 h-LC50分别为0.41 mg·L-1和4.1 mg·L-1,而对非洲爪蟾蝌蚪的96 h-LC50分别为0.12 mg·L-1和3.1 mg·L-1,显示黑斑蛙蝌蚪对这2种化学品的敏感性略低于非洲爪蟾。鉴于2类蝌蚪对化学品的敏感性存在差异,且黑斑蛙蝌蚪的自然死亡率低,材料更易获得,笔者认为黑斑蛙蝌蚪比非洲爪蟾更适合作为蝌蚪急性毒性试验的材料,用于我国化学品环境管理中的毒性评价。  相似文献   

6.
为评价辛基酚(OP)对中国林蛙(Rana chensinensis)蝌蚪的急性毒性,将26期蝌蚪暴露在浓度为5.0×10-7~5.0×10-6mol·L-1OP的水体中进行急性毒性实验.结果显示,蝌蚪的死亡率随着OP浓度的升高和暴露时间的延长而增加,24、48、72、96h的半数致死浓度(LC50)分别为3.55×10-6、2.96×10-6、1.90×10-6、1.52×10-6mol·L-1;96h零致死浓度(96hLC0)为9.70×10-7mol·L-1;安全浓度(SC)为1.52×10-7mol·L-1.另外,为探讨SC以下OP对蝌蚪生长发育的影响,将26期蝌蚪连续暴露在1.0×10-7、5.0×10-8、1.0×10-8、1.0×10-9mol·L-1OP的水体中,并设1.0×10-7、1.0×10-8mol·L-1雌二醇(E2)阳性对照及空白对照,直至70%蝌蚪完全变态.在暴露20d、40d和70%蝌蚪完全变态时共3次测量蝌蚪及幼蛙的体长和体重,分别统计70%蝌蚪发育至跗蹠部伸长期、前肢伸出期和完全变态期所需的时间.结果表明,SC以下OP和E2对蝌蚪死亡率的影响不明显,但1.0×10-9~1.0×10-7mol·L-1OP和1.0×10-7、1.0×10-8mol·L-1E2可不同程度地延缓蝌蚪发育时间,降低蝌蚪体长和体重,并导致少数蝌蚪发育畸形.结果说明低浓度OP与E2相似,对蝌蚪生长发育具有抑制作用.  相似文献   

7.
Despite the importance of acquired predator recognition in mediating predator–prey interactions, we know little about the specific characteristics that prey use to distinguish predators from non-predators. Recent experiments with mammals and fish indicate that some prey lacking innate predator recognition have the ability to display anti-predator responses upon their first encounter with those predators if they are similar to predators that the prey has recently learned to recognize. This phenomenon is referred to as generalization of predator recognition. In this experiment, we documented for the first time that larval amphibians (woodfrog, Rana sylvatica) have the ability to generalize the recognition of known predators to closely related novel predators. Moreover, we demonstrated that this ability is dependent on the level of risk associated with the known predator. When red-bellied newt, Cynops pyrrhogaster (known predator), was paired with simulated low risk, tadpoles displayed fright responses to newts and novel tiger salamanders, Ambystoma tigrinum, but not to novel African clawed frogs, Xenopus laevis. However, when the newt was paired with simulated high risk, tadpoles generalized their responses to both tiger salamanders and African clawed frogs. Larval anurans seem to have a wider generalization frame than other animals.  相似文献   

8.
Summary. Recent studies indicate that amphibian eggs are capable of hatching plasticity in response to chemical cues released by predators feeding on conspecific eggs or larvae. However, information is scarce on the relative importance of predator and conspecific cues in such a process. In particular, no attempt has been made to compare the effects of embryonic exposures to chemical cues indicative of a predation risk for eggs and larvae, although both life stages can co-occur in natural habitats. In this context, common frog embryos (Rana temporaria) were raised until hatching in the presence of crushed conspecific extracts from eggs and tadpoles to assess their respective influences on some hatching and larval traits. While a significant delay in hatching time was observed in embryos exposed to chemical cues from tadpole extract, this life-history shift appeared unaffected by embryonic exposure to egg extract. Hatchlings derived from eggs incubated in the presence of both conspecific extracts showed a significantly greater weight than unexposed controls. However, such an effect was no longer apparent 15, 30 and 50 days after hatching, suggesting that embryonic exposure to chemical cues from damaged conspecific eggs and tadpoles has no influence on larval growth. Lastly, morphological measurements performed on hatchlings and older tadpoles (15, 30 and 50 days old) revealed no significant effect of embryonic treatments on the shape of body and tail.  相似文献   

9.
Tadpoles can alter their behavior, morphology, and life history in response to habitat change. Although chemical signals from conspecifics or predators play an important role in tadpole habitat assessment, little is known about the role of visual cues and the extent to which tadpoles rely on their vision for intraspecific social assessment. The aim of our experiments was to determine whether larval anurans use visual images of other tadpoles as indicators of density and to analyze how, and to what extent, images of conspecifics alone affect tadpole development, growth, and behavior. To assess this, we raised both Rana sylvatica and Bufo americanus tadpoles in aquaria with either quarter- or half-mirrored walls. Both physically increased density and increased density simulated with mirrors decreased tadpole growth and developmental rates, and increased activity in Rana tadpoles. Bufo tadpoles did not significantly alter their growth and development in response to visually increased density. Only true, i.e., physically, increased density had an effect on growth and activity in Bufo tadpoles. Our data show that images of conspecifics are used as visual cues by Rana tadpoles and can induce phenotypically plastic changes in several traits. This response to visual cues is taxon-specific. An erratum to this article can be found at  相似文献   

10.
采集金矿附近山区河流水质、沉积物和当地两栖类动物中国林蛙样品,应用高效液相色谱仪测定污染区和对照区林蛙体内各组织器官的胞嘧啶(c)和5-甲基胞嘧啶(5-mc)含量,探讨因金矿开采引起的汞污染以及对林蛙体内组织器官DNA甲基化水平的变化,研究汞胁迫下,两栖类动物体内分子水平的影响。结果表明:金矿开采区河流水质和沉积物已受到甲基汞污染,污染区林蛙体内甲基汞含量远高于对照区;林蛙体内各组织器官中DNA甲基化水平发生不同的变化:污染区林蛙肝脏和皮肤中DNA甲基化水平高于对照区,肌肉和脑干DNA甲基化水平低于对照区;雄性林蛙肝脏和脑干DNA甲基化水平高于雌性,肌肉和皮肤DNA甲基化水平却低于雌性。以上结果说明汞胁迫下,中国林蛙体内组织器官DNA甲基化水平可以发生一定的变化,环境中重金属汞离子进入林蛙体内含量的不同,可以促进或抑制其体内甲基化水平的变化,引起基因毒性作用。  相似文献   

11.
In intensively used arable areas, a contamination of the reproduction ponds with pesticides probably impairs the development of spawn and tadpoles of amphibians, based on the coincidental space and time. Therefore, the effects of the herbicide isoproturon (IPU) on the early life stages of the firebellied toad (Bombina bombina) and the closely related yellowbellied toad (Bombina variegata) were investigated. The results of the exposure with14C-labelled IPU (1 μg/L) indicated an uptake into the spawn and tadpoles of bothBombina species. The jelly capsules could not protect the embryo from effects of the herbicide. Tadpoles with complete opercula and without external gills were most sensitive to contamination by IPU. Physical and behavioral abnormalities of the tadpoles developed at concentrations, of 0.1 μg/L after 24 h exposure. At increasing IPU-concentrations the number of impaired and dead tadpoles increased significantly compared to the control. The enzymatic system of the Glutathion S-Transferase (GST) of theBombina tadpoles were influenced significantly by the duration and concentration of IPU exposure. Compared to the pure active ingredient IPU, the commercial herbicide TOLKAN FLO® provoked a stronger enzymatic response in the tadpoles. This could be caused by the presence of an emulsifier used in the TOLKAN FLO® formulation which enhanced the availability of IPU and/or the interaction between IPU and the emulsifier.  相似文献   

12.
氟元素以不同的结合形式广泛存在于自然界中,适量氟的摄取有益于龋齿预防和骨骼发育,然而过量氟的摄取会对动物及人体健康造成危害。近年来,大量的人类活动导致水环境中氟含量持续升高。为探究水域氟污染对中国林蛙的毒性影响,本研究以中国林蛙(Rana chensinensis)胚胎为试验材料,对卵黄栓期(G12期)胚胎进行了0、0.7、4.2、19.4、42.8 mg·L~(-1)F-慢性水体暴露直至胚胎发育到变态高峰期(G42期)的研究。分别于暴露25 d和40 d后取样测定了蝌蚪全长、体长、体重和发育分期;此外,分析了F-慢性暴露对变态率、G42期蝌蚪的全长、体长、体重和后肢长以及G42期蝌蚪骨骼发育的影响。结果表明:暴露25 d时,4.2 mg·L~(-1)F-处理组促进了林蛙蝌蚪的生长发育,而42.8 mg·L~(-1)F-处理组显著抑制了蝌蚪的生长发育;暴露40 d时,19.4 mg·L~(-1)F-和42.8 mg·L~(-1)F-处理组蝌蚪的生长发育均受到显著抑制。持续进行慢性暴露78 d后,4.2 mg·L~(-1)F-处理组蝌蚪的变态率显著升高,而42.8 mg·L~(-1)F-处理组蝌蚪的变态率受到了显著抑制。此外,42.8 mg·L~(-1)F-处理组G42期蝌蚪形态指标(全长、体长和后肢长)以及骨骼发育均受到抑制。依据G42期中国林蛙蝌蚪的生长发育指标和变态率为观察指标,氟离子慢性暴露对中国林蛙蝌蚪的最低可观察效应浓度(LOEC)为0.7 mg·L~(-1)。研究表明,水环境中高浓度的氟污染会对中国林蛙蝌蚪的生长发育、变态和骨骼发育等造成潜在的不利影响,水体氟污染的生态毒性效应理应引起高度重视。  相似文献   

13.
ABSTRACT

Human activity has led to widespread chemical alteration of natural environments. Aquatic ecosystems are especially susceptible to chemical changes, including those caused by runoff and invasive species. Here, we examined the effects of water chemistry, specifically sodium chloride as well as three metals (Ca, K, and Mn) known to differ between native and invasive wetland plant species’ leaf tissues, on the development of two model amphibians: the native Northern leopard frog, Lithobates pipiens, and the non-native African clawed frog, Xenopus laevis. We exposed frog eggs to metal treatment solutions and measured time to hatching (TTH), and following hatching, we exposed tadpoles to a lethal concentration of sodium chloride and recorded time to death (TTD). We found that increasing metal concentrations generally resulted in acceleration of TTH for Xenopus tadpoles, but had no effect on leopard frogs. However, increasing metal concentrations (Ca, Mn) increased leopard frog tadpole susceptibility to NaCl (decreased TTD), while increasing metal concentrations (Ca, K) generally resulted in decreased Xenopus tadpole susceptibility to NaCl. Overall, our data suggest that invasive amphibians may be more tolerant to chemical changes than native amphibians, including those driven by the introduction of invasive plant species.  相似文献   

14.
Amphibians are able to learn to recognize their future predators during their embryonic development (the ghost of predation future). Here, we investigate whether amphibian embryos can also acquire additional information about their future predators, such as the level of threat associated with them and the time of day at which they would be the most dangerous. We exposed woodfrog embryos (Rana sylvatica) to different concentrations of injured tadpole cues paired with the odor of a tiger salamander (Ambystoma tigrinum) between 1500 and 1700 hours for five consecutive days and raised them for 9 days after hatching. First, we showed that embryos exposed to predator odor paired with increasing concentrations of injured cues during their embryonic development subsequently display stronger antipredator responses to the salamander as tadpoles, thereby demonstrating threat-sensitive learning by embryonic amphibians. Second, we showed that the learned responses of tadpoles were stronger when the tadpoles were exposed to salamander odor between 1500 and 1700 hours, the time at which the embryos were exposed to the salamander, than during earlier (1100–1300 hours) or later (1900–2100 hours) periods. Our results highlight the amazing sophistication of learned predator recognition by prey and emphasize the importance of temporal considerations in experiments examining risk assessment by prey.  相似文献   

15.
Recent investigations have indicated that animals are able to use chemical cues of predators to assess the magnitude of predation risk. One possible source of such cues is predator diet. Chemical cues may also be important in the development of antipredator behaviour, especially in animals that possess chemical alarm substances. Tadpoles of the common toad (Bufo bufo) are unpalatable to most vertebrate predators and have an alarm substance. Tadpoles of the common frog (Rana temporaria) lack both these characters. We experimentally studied how predator diet, previous experience of predators and body size affect antipredator behaviour in these two tadpole species. Late-instar larvae of the dragonfly Aeshna juncea were used as predators. The dragonfly larvae were fed a diet exclusively of insects, R. temporaria tadpoles or B. bufo tadpoles. R. temporaria tadpoles modified their behaviour according to the perceived predation risk. Depending on predator diet, the tadpoles responded with weak antipredatory behaviour (triggered by insect-fed predators) or strong behaviour (triggered by tadpole-fed predators) with distinct spatial avoidance and lowered activity level. The behaviour of B. bufo in predator diet treatments was indistinguishable from that in the control treatment. This lack of antipredator behaviour is probably related to the effective post-encounter defenses and more intense competitive regime experienced by B. bufo. The behaviour of both tadpole species was dependent on body size, but this was not related to predator treatments. Our results also indicate that antipredator behaviour is largely innate in tadpoles of both species and is not modified by a brief exposure to predators. Received: 22 August 1996 / Accepted after revision: 31 January 1997  相似文献   

16.
醇和酚类等有机化合物作为重要的工业原料,广泛应用于医药卫生、有机合成、食品工业等领域,但生产中排放于环境的这些物质,会对生物造成一定的毒性作用。为建立包含醇和酚类有机污染物对欧洲林蛙蝌蚪及梨形四膜虫毒性的定量结构-活性相关性模型,计算了227种有机污染物的分子连接性指数和分子形状指数,优化筛选了分子连接性指数的0X、1X、2X、4X和5Xc、分子形状指数的K1和K2共7种参数,将这7种结构参数作为神经网络输入层变量,110种有机污染物对欧洲林蛙蝌蚪的毒性值作为输出层变量,采用7:8:1的网络结构方式,构建了令人满意的对欧洲林蛙蝌蚪毒性的神经网络预测模型,方程总相关系数r为0.988,毒性预测值与实验值之间的平均误差为0.14。为检验指数的普适性,同样用这7个结构参数与117种醇和酚类化合物对梨形四膜虫的毒性进行分析,所得神经网络模型的总相关系数达到0.997,对梨形四膜虫毒性的预测值与实验值之间的平均误差仅为0.065,结果表明,所建模型具有良好的预测有机污染物对林蛙蝌蚪及梨形四膜虫急性毒性的能力。  相似文献   

17.
Predation and hunger are threats for most organisms, and appropriate behavioural responses to both factors should be shaped by natural selection. In combination, however, the behavioural demands of predation avoidance and effective foraging often cannot be satisfied at the same time and lead to a conflict within organisms. We examined the behavioural responses of two closely-related species of tadpoles, Rana lessonae and R. esculenta, to simulated predation by fish and hunger. Tadpoles, hatched and reared in the laboratory, were tested in a three-way factorial (predation risk × hunger × species) experiment with four predation levels and four hunger levels. Both species decreased their swimming activity with increasing predation risk. Predation risk did not influence the amount of activity time invested in feeding but caused the tadpoles to spend less time in patches with food. Refuges were not used to avoid predation. R. esculenta was more sensitive to predation risk than R. lessonae. Hunger increased both the activity of tadpoles and the amount of activity time invested in feeding, thus indicating an increased energy intake. No interactions were observed between predation risk and hunger. These results show that tadpoles possess genetically-based behavioural mechanisms that allow them to respond in a graded manner to predation and hunger. However, they did not balance the two conflicting demands of predation avoidance and effective foraging; the two mechanisms appeared to act independently. Correspondence to: R.D. Semlitsch  相似文献   

18.
Many prey assess predation risk through predator chemical cues. Numerous studies have shown that (1) prey sometimes respond to chemical cues produced by heterospecifics and (2) that many species are capable of associative learning. This study extends this research by focusing on predation risk assessment and antipredator behavior in environments containing chemical cues produced by multiple prey species. The results show that green frog (Rana clamitans) tadpoles (1) assess risk from the chemical cue produced during predation by a heterospecific (gray tree frog, Hyla versicolor, tadpoles) and (2) can exhibit similarly strong behavioral responses to a mix of conspecific and heterospecific cues compared to conspecific cue alone, depending on their conditioning environment. I then discuss how the prey choice of the predators and the relative abundances of the prey species should influence the informational value of heterospecific cues.  相似文献   

19.
We examined the behavioral and developmental responses of Xenopus laevis larvae to their mirror images in three experiments. The mirrors allowed us to visually simulate increased density, without the tadpoles’ behavior being confounded by chemical cues from additional tadpoles. In the first experiment, we demonstrated that Xenopus tadpoles have a right eye preference for mirrors, contrary to the left eye preference of all other anuran species studied to date. This lateralized eye use disappeared, however, as tadpoles approached metamorphosis. Next, we examined how mirrored aquaria walls affected tadpole growth and development. We found that tadpoles raised in aquaria with partially mirrored walls showed depressed growth compared to tadpoles raised without mirrors, despite the fact that Xenopus larvae normally thrive when raised in visual contact with conspecifics. The tadpoles raised with mirrors had, though not significantly, proportionally larger bodies relative to their tail length (d = 0.51). This suggests that a phenotypically plastic response in body proportions was induced in these tadpoles solely by the sight of other tadpoles. The third experiment established that X. laevis tadpoles are more active in front of a mirror; i.e., they turn more often and spend more time in front of mirrored surfaces. We consider this increased activity to be an aberrant behavior of the tadpoles, which were attempting to school with their own images. We suggest that this extra activity reduced the amount of energy available for growth, accounting for the depressed growth seen in our second experiment.  相似文献   

20.
Tadpoles of the common freshwater Sunda toad, Duttaphrynus melanostictus (Amphibia, Bufonidae), were exposed for a 4-day period under laboratory conditions to copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminum (Al), and manganese (Mn) at various concentrations. Mortality was assessed and median times of death (LT50) and lethal concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure times and concentrations for all metals. LC50 (96?h) for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.03, 0.3, 4.2, 1.5, 8.8, 0.4, 1.9, and 39?mg?L?1, respectively. Cu was the most toxic to D. melanostictus, followed by Cd, Fe, Al, Pb, Zn, Ni, and Mn (Cu?>?Cd?>?Fe?>?Al?>?Pb?>?Zn?>?Ni?>?Mn). Duttaphrynus melanostictus is similarly sensitive to these metals as other amphibian tadpoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号