首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract:  Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards.  相似文献   

2.
Advanced biofuels such as cellulosic ethanol are of great interest in the USA. With agriculture being the major source of feedstock for advanced biofuels, how farmers would respond to markets and policy incentives in providing such feedstock can directly affect sufficient and sustainable supply of advanced biofuels and their environmental sustainability. In this study, we developed an economic model to examine farmers' production choices in a context where agricultural markets are linked to energy markets. We identified the economic conditions under which farmers could maximize their profits by converting current grain cropland to grow cellulosic biomass crops. An empirical illustration showed that with current technology, farmers are unlikely to grow switchgrass as a dedicated energy crop instead of corn on cropland. The biofuel incentives in the 2008 Farm Bill can improve the competitiveness of switchgrass, but may stimulate corn production as well, with corn residues as an alternative feedstock for advanced biofuels. The continuous, possibly expanding, corn production in future raises the same issues for advanced biofuels as for corn grain-based ethanol. To assure the environmental sustainability of advanced biofuel production, further research is needed to help design environmental policies alongside existing biofuel initiatives.  相似文献   

3.
Abstract: Much of the remaining grassland, particularly in North America, is privately owned, and its conversion to cultivated cropland is largely driven by economics. An understanding of why landowners convert grassland to cropland could facilitate more effective design of grassland‐conservation programs. We built an empirical model of land‐use change in the Prairie Pothole Region (north‐central United States) to estimate the probability of grassland conversion to alternative agricultural land uses, including cultivated crops. Conversion was largely driven by landscape characteristics and the economic returns of alternative uses. Our estimate of the probability of grassland conversion to cultivated crops (1.33% on average from 1979 to 1997) was higher than past estimates (0.4%). Our model also predicted that grassland‐conversion probabilities will increase if agricultural commodity prices continue to follow the trends observed from 2001 to 2006 (0.93% probability of grassland conversion to cultivated crops in 2006 to 1.5% in 2011). Thus, nearly 121 million ha (30 million acres) of grassland could be converted by 2011. Conversion probabilities, however, are spatially heterogeneous (range 0.2% to 3%), depending on characteristics of a parcel (e.g., soil quality and economic returns). Grassland parcels with relatively high‐quality land for agricultural production are more likely to be converted to cultivated crops than lower‐quality parcels and are more responsive to changes in the economic returns on alternative agricultural land uses (i.e., conversion probability increases by a larger magnitude for high‐quality parcels when economics returns to alternative uses increase). Our results suggest that grassland conservation programs could be proactively targeted toward high‐risk parcels by anticipating changes in economic returns, such as could occur if a new biofuel processing plant were to be built in an area.  相似文献   

4.
通过水旱作物轮换种植,探索与利用作物—昆虫(害虫和益虫)—杂草三大群落的消长与变迁规律,去发展生产,保持农田生态平衡,优化农业生态环境,最大限度地提高作物产量。  相似文献   

5.
There currently exists a large push for the use, improvement, and expansion via landscape modification of dedicated biofuel crops (feedstocks) in the United States and in many parts of the world. Ecological concerns have been voiced because many biofuel feedstocks exhibit characteristics associated with invasiveness, and due to potential negative consequences of agronomic genes in native wild populations. Seed purity concerns for biofuel feedstock cultivars whose seeds would be harvested in agronomic fields also exist from the agribusiness sector. The common thread underlying these concerns, which have regulatory implications, is gene flow; thus detailed knowledge of gene flow in biofuel crop plants is important in the formulation of environmental risk management plans. Here, we synthesize the current state of knowledge of gene flow in an exemplary biofuel crop, switchgrass (Panicum virgatum L.), which is native to eastern North America and is currently experiencing conventional and technological advances in biomass yields and ethanol production. Surprisingly little is known regarding aspects of switchgrass pollen flow and seed dispersal, and whether native populations of conspecific or congeneric relatives will readily cross with current agronomic switchgrass cultivars. We pose that filling these important gaps will be required to confront the sustainability challenges of widespread planting of biofuel feedstocks.  相似文献   

6.
The landscape ecological risk (LER) in Xiamen City, China, from 1990 to 2030 was studied using an urban land use and land cover change (LUCC) model and LER analysis. The LUCC model was used to predict the LUCC of Xiamen from 2020 to 2030. We analyzed the characteristics of LUCC and landscape pattern changes and, finally, evaluated the effect of rapid LUCC on LER. Of the six landscape types investigated, built-up land and farmland demonstrated the most significant changes. The area of built-up land increased by 1.5 times in 2010 and is predicted to increase by 2.7 times in 2030 than that in 1990. The area of farmland increased from 34.5% in 1990 to 24.5% in 2010 and is predicted to decrease to 15.1% in 2030. The number of patches (NP) of built-up land decreased with increasing area, which promoted the dominance of built-up land over other landscape types. Five landscape types, those other than built-up land, increased in NP, landscape fragmentation, segmentation, and disturbance but decreased in dominance. The LER of Xiamen in 2010 was slightly lower than that in 1990. However, with the acceleration of urbanization, the LER in 2020 and 2030 will increase by 7.6% and 12.5% than that in 2010. The LER will significantly increase in areas such as the Huandong sea area, the second urban core of Xiamen, and northern Xiang'an. For the areas, some measures (e.g. optimum urban spatial growth patterns and control of coastal reclamation) must inevitably increase to reduce the LER posed by rapid urbanization.  相似文献   

7.
A new cropping system of corn mixed with grasses was tried to make full and efficient use of water and to ease environmental problems such as soil erosion by water and wind in grain and forage feed production practices. Field experiments were conducted to investigate the water use efficiency under this mixture cropping system. Six treatments with two replicates were arranged as: bare field, corn only, rye only, alfalfa only, rye–corn mixture and alfalfa–corn mixture. Lysimeters were used to measure different components of water consumption in the crop fields for water use efficiency estimation. From the yields and water consumption of crops under different treatments, combined water use efficiency of corn and grasses were estimated. The results showed that WUEs in the mixed cropping fields of corn–grasses were much higher than those in the fields where only corn or grass were grown. Averaged WUE was 3.71 kg/m3 from the corn and rye mixture fields, 30% higher than that from the plots where only corn or rye were grown. Averaged WUE was 4.55 kg/m3 from the alfalfa and corn mixture fields, 60% higher than that from the fields where only corn or alfalfa were grown. Under the same conditions of irrigation, yields from the rye and corn mixture plots increased by 33%, as compared with those from fields where only corn or rye were grown. The yields from alfalfa and corn mixture fields were 61% higher than those from fields where only corn or alfalfa were grown. The experimental results also indicated that corn and alfalfa mixture cropping is better than a corn–rye mixture system.  相似文献   

8.
辽西大凌河流域土地利用变化及驱动力分析   总被引:2,自引:1,他引:2  
从政策、流域综合治理、经济发展和技术进步、农民认知态度等4方面对影响大凌河流域土地利用变化的驱动力进行了分析。同时运用农户问卷调查和驱动力分析结果,选取影响耕地变化的社会经济和人口因子,运用主成分分析和多元迭代回归分析确定影响耕地变化的主要因子,并拟合出耕地变化的最优度模型。研究结果表明:在1987—2002年期间,农田和未利用荒地面积在不断减小,而林地、果园、草地在不断增加,但1995年后变化边际度大大减小;主成分分析表明影响土地利用变化主要影响因子是农业人口(A-POP)、总人口(T-POP)、农村经济收入(TIRE)、农林牧渔收入(IAFAF)和第三产业总产值(GTI);多元迭代回归分析表明耕地面积变化的最优回归模型中主变量是农业人口(A-POP)、总人口(T-POP)、农村经济收入(TIRE),这些变量能够解释95.1%的耕地变化。  相似文献   

9.
分别从作物生境、作物形态和作物种类角度分析吉林省近50a的农田景观动态变化情况,结合农业旱灾、水灾、风雹灾、霜冻灾害和作物病虫害成灾面积动态变化和各种农业自然灾害的成灾面积与受灾面积比的变化趋势,探讨农田景观动态与农业自然灾害的相互关系,指出农田景观生态多样性的降低是农业自然灾害频繁和灾损增加的一个主要原因。为了减轻自然灾害的损失,农业生产布局多样化是今后发展的方向。  相似文献   

10.
采用大田试验,设计冬小麦(Triticum aestivum Linn.)在春季起身后套作半夏[Pinellia ternata(Thunb.)Breit.](小麦/半夏)、冬油菜(Brassica campestris L.)收获后复播半夏[Pinellia ternata(Thunb.)Breit.](油菜-半夏)和春玉米(Zea mays L.)与半夏[Pinellia ternata(Thunb.)Breit.]间作(玉米+半夏)3种耕作模式,探讨晋南两熟半干旱区适宜半夏的粮药耕作模式。结果表明:与油菜-半夏、玉米+半夏耕作模式相比,小麦/半夏耕作模式经济产量最高,生态效益最好;不同半夏品种中,西河半夏(原产地温度相对最低)产量最高,新绛半夏(原产地温度相对较高)产量最低。表明半夏适宜于从低温地区引种到高温地区栽培,可提高产量。与商洛半夏和新绛半夏相比,西河半夏分别增产19.1%和41.9%;小麦/半夏耕作模式为最佳粮药耕作模式,其半夏产量与油菜-半夏和玉米+半夏耕作模式相比,分别增产53.4%和70.8%。  相似文献   

11.
从农业区域系统的角度分析农作物的空间集聚和专业化,可为农业产业结构调整及优化提供决策依据.以西藏粮食作物、油料作物、蔬菜和饲草4类作物为研究对象,基于1995-2020年西藏农业统计年鉴农作物播种面积数据分析西藏农作物种植面积时序变化,基于1995-2018年统计年鉴农作物播种面积数据和74个县域空间单元,综合运用重心模型、基尼系数、区位熵及空间自相关模型,通过ArcGIS软件分析西藏作物种植空间变化及专业化格局.结果显示:(1)西藏粮食作物种植面积占比历年均占绝对优势,但呈逐年下降趋势,油料作物种植面积整体呈波动性小幅上升,蔬菜和青饲料种植面积逐年明显增长.粮食作物、经济作物(含油料作物和蔬菜)、饲料作物比例从1995年的86:12:2调整到2020年的68:17:14.(2)1995-2015年间西藏粮食和油料生产重心较为稳定,未出现较大范围的地理迁移,其他农作物重心迁移距离较大,从东南向西北迁移416.7 km.(3)西藏农作物均呈现一定程度的空间集聚和区域专业化生产格局,但在研究期内生产集聚及专业化水平呈下降趋势.(4)将西藏粮食、油料和其他农作物划分为绝对优势区、比较优势区、优势衰退区、潜力优势区、不具优势区、优势退出区、可种植区和无种植区8种类型.本研究表明西藏农作物种植结构调整明显,基于生产格局及演变趋势划定了专业化分区,可引导农作物生产布局优化,对有效保障西藏地区粮食安全具有重要意义.(图6表5参26)  相似文献   

12.
The removal of corn stover or production of herbaceous crops such as switchgrass (Panicum virgatum) or big bluestem (Andropogon gerardii) as feedstocks for bioenergy purposes has been shown to have significant benefits from an energy and climate change perspective. There is potential, however, to adversely impact water and soil quality, especially in the United States Corn Belt where stover removal predominantly occurs and possibly in other areas with herbaceous energy crops depending upon a number of geo-climatic and economic factors. The overall goal of this research was to provide a thorough and mechanistic understanding of the relationship between stover and herbaceous crop production management practices and resulting range of impacts on soil and water quality, with a focus on eastern Iowa, USA. Comparisons of the production of herbaceous bioenergy crops to continuous corn (Zea mays L.) and corn-soybean (Glycine max L.) rotations on five different soils representative of the region were performed. Indices for total nutrient (nitrogen and phosphorus) loss to surface water and groundwater, total soil loss due to water and wind erosion, and cumulative soil carbon loss were derived to assess long-term sustainability. The Agricultural Policy/Environmental eXtender (APEX) agroecosystem model was used to quantify the sustainability indices and to generate sufficient data to provide a greater understanding of variables that affect water and soil quality than previously possible. The results clearly show the superiority of herbaceous crop production from a soil and water quality perspective. They also show, however, that compared to traditional cropping systems (e.g., corn-soybean rotations with conventional tillage), soil and water quality degradation can be reduced under certain conditions at the same time stover is removed.  相似文献   

13.
张锐波  张丽萍 《生态环境》2004,13(2):204-206,224
以杭州市区为研究区,利用近卜年的土地利用系列统计资料和遥感解译数据,采用统计分析和区位原理,经过数值计算,分析了杭州市区扩建过程中土地利用动态变化特点,重点讨论了耕地和农作物播种面积的时空动态过程。通过区位商数和分离指数的计算分析,揭示了未来土地利用方式的时空变化趋势。研究结果表明,居民工矿用地和耕地面积的变化最为明显;农作物播种面积的递减速率高于耕地面积的递减速率;蔬菜播种面积的区域不平衡性最大,集中程度高。萧山区是未来主要的菜篮子工程发展区。  相似文献   

14.
The increasing biofuel production from agricultural crops has been suggested to cause indirect land use change (iLUC). This increases interest in biofuel feedstocks that qualify as iLUC-free: (1) residues without a market, (2) crops from previously unused arable land, (3) additional crops and (4) biomass from intensified production. In the present study, biofuel potential from such feedstocks was quantified for Sweden and compared against the predicted biofuel demand from agricultural resources in 2030. The results indicate that straw (category 1) could cover up to 37% of future biofuel demand. Grass leys from intensified production (category 4), set-aside and abandoned land (category 2) and excess grass silage (category 1) could cover up to 79%. Intermediate and ecological focus area crops (category 3) could contribute up to 21%. To realize the biofuel targets, a high implementation rate of additional iLUC-free feedstock is needed. Future studies need to investigate impacts of low-iLUC policies.  相似文献   

15.
通过水土流失地区不同农业生产方式对土地质量及土壤生产力的影响研究,探讨不同作物及其不同的种植方式对农田可持续利用的评价预测模型及土地资源利用的价值核算方法。通过对山西省闻喜县的案例应用验证,表明了在农业可持续发展研究中应用的可行性。  相似文献   

16.
春玉米种植密度对土壤有机碳组分的影响   总被引:1,自引:0,他引:1  
通过西辽河灌区连续3 a的田间试验,研究春玉米不同种植密度(60 000、75 000和90 000株·hm-2)下土壤有机碳组分的质量分数及空间分布特征,阐明了春玉米种植密度对不同层次土壤有机碳组分的影响机制。结果表明:高、低密度均增加土壤0~40 cm土层有机碳质量分数,中密度下促进土壤微生物生物量碳增加。随着种植密度的加大土壤中活性有机碳增加,轻组有机碳减少。玉米生长主要促进10~20 cm土层有机碳的耗损,高密度下促进犁底层(20~40 cm)土壤有机碳质量分数及其活性,使其轻组有机碳减少,微生物生物量碳增加。低密度下主要增加表层(0~10 cm)土壤有机碳质量分数。种植密度通过影响根系群体生物量及其分布,调节土壤微生物活性、残落物碳输入影响土壤有机碳组分。适当的增加春玉米种植密度有利于春玉米农田高产固碳。  相似文献   

17.
Abstract: Little attention has been paid to fragmentation effects on organisms living in open habitats in which species may have high mobility and generalized habitat use. We investigated landscape effects on 23 farmland bird species breeding in 72 semi-natural dry pastures distributed equally among three landscape types (agricultural-dominated, mosaic, and forest-dominated) in southcentral Sweden. There were generally higher local abundances of farmland birds in pastures located in agricultural-dominated and mosaic landscapes than in forest-dominated landscapes. Species feeding on a mixed diet as well as resident species and temperate migrants were most numerous in pastures located in agricultural-dominated landscapes and least numerous in forest-dominated landscapes. While controlling for the effects of local pasture area and vegetation structure, we found that the local abundance of 18 ( 78%) farmland bird species was significantly associated with the composition and structure of the surrounding landscape. The landscape distance that explained the largest part of local variation in abundance varied among species according to the size of their breeding territories or foraging home ranges. Our results suggest that habitat use of farmland birds breeding in pastures is affected both by suitable foraging habitats in the surrounding landscape and by nest sites within local pastures. Despite the generally higher abundances of farmland birds in pastures located in agricultural-dominated landscapes, most species of European and Swedish conservation concern had higher abundance in pastures located in more forested landscapes. Thus, the rapid loss of semi-natural dry pastures in forest-dominated landscapes is a serious threat to the future of these species in Sweden.  相似文献   

18.
Several geopolitical factors, aggravated by worries of global warming, have been fueling the search for and production of renewable energy worldwide for the past few years. Such demand for renewable energy is likely to benefit the sugarcane ethanol industry in Brazil, not only because sugarcane ethanol has a positive energetic balance and relatively low production costs, but also because Brazilian ethanol has been successfully produced and used as biofuel in the country since the 1970s. However, environmental and social impacts associated with ethanol production in Brazil can become important obstacles to sustainable biofuel production worldwide. Atmospheric pollution from burning of sugarcane for harvesting, degradation of soils and aquatic systems, and the exploitation of cane cutters are among the issues that deserve immediate attention from the Brazilian government and international societies. The expansion of sugarcane crops to the areas presently cultivated for soybeans also represent an environmental threat, because it may increase deforestation pressure from soybean crops in the Amazon region. In this paper, we discuss environmental and social issues linked to the expansion of sugarcane in Brazil for ethanol production, and we provide recommendations to help policy makers and the Brazilian government establish new initiatives to produce a code for ethanol production that is environmentally sustainable and economically fair. Recommendations include proper planning and environmental risk assessments for the expansion of sugarcane to new regions such as Central Brazil, improvement of land use practices to reduce soil erosion and nitrogen pollution, proper protection of streams and riparian ecosystems, banning of sugarcane burning practices, and fair working conditions for sugarcane cutters. We also support the creation of a more constructive approach for international stakeholders and trade organizations to promote sustainable development for biofuel production in developing countries such as Brazil. Finally, we support the inclusion of environmental values in the price of biofuels in order to discourage excessive replacement of natural ecosystems such as forests, wetlands, and pasture by bioenergy crops.  相似文献   

19.
Grassland to cropland conversion in the northern prairie of the United States has been a topic of recent land use change studies. Within this region more corn and soybeans are grown now (2017) than in the past, but most studies to date have not examined multi-decadal trends and the synergistic web of socio-ecological driving forces involved, opting instead for short-term analyses and easily targeted agents of change. This paper examines the coalescing of biophysical and socioeconomic driving forces that have brought change to the agricultural landscape of this region between 1980 and 2013. While land conversion has occurred, most of the region’s cropland in 2013 had been previously cropped by the early 1980s. Furthermore, the agricultural conditions in which crops were grown during those three decades have changed considerably because of non-biophysical alterations to production practices and changing agricultural markets. Findings revealed that human drivers played more of a role in crop change than biophysical changes, that blending quantitative and qualitative methods to tell a more complete story of crop change in this region was difficult because of the synergistic characteristics of the drivers involved, and that more research is needed to understand how farmers make crop choice decisions.  相似文献   

20.
采用大田试验,设计冬小麦(Triticum aestivum Linn.)在春季起身后套作半夏[Pinellia ternata(Thunb.)Breit.](小麦/半夏)、冬油菜(Brassica campestris L.)收获后复播半夏[Pinellia ternata(Thunb.)Breit.](油菜-半夏)和春玉米(Zea mays L.)与半夏[Pinellia ternata(Thunb.)Breit.]间作(玉米+半夏)3种耕作模式,探讨晋南两熟半干旱区适宜半夏的"粮药"耕作模式。结果表明:与油菜-半夏、玉米+半夏耕作模式相比,小麦/半夏耕作模式经济产量最高,生态效益最好;不同半夏品种中,西河半夏(原产地温度相对最低)产量最高,新绛半夏(原产地温度相对较高)产量最低。表明半夏适宜于从低温地区引种到高温地区栽培,可提高产量。与商洛半夏和新绛半夏相比,西河半夏分别增产19.1%和41.9%;小麦/半夏耕作模式为最佳"粮药"耕作模式,其半夏产量与油菜-半夏和玉米+半夏耕作模式相比,分别增产53.4%和70.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号