首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
初春苦草腐解过程中营养盐释放过程及规律   总被引:4,自引:0,他引:4  
采用室内模拟方法研究初春温度条件下苦草在腐解过程中碳、氮和磷的释放过程,研究沉水植物衰亡过程中营养盐的释放规律.结果表明,在初春温度条件下,苦草迅速腐解,向水体释放大量碳、氮和磷.随着时间的推移,苦草向水体释放的磷大部分沉积进入底泥,而氮则是部分沉积进入底泥,部分以气体形式移出水体.苦草腐烂分解产生的厌氧条件和大量有机碳的供给促进了水体反硝化作用并加快氮素移出水体.较大的生物残留量会引起水体缺氧,同时产生大量营养盐,导致水质严重恶化,因此需要适时收割水生植物来控制水体残留生物量.  相似文献   

2.
A leaf-bag field experiment was conducted to investigate the decomposition and release of nutrients from leaves of two aquatic macrophytes (floating-leaved Trapa bispinosa and submerged Vallisneria natans) deposited in the four vertical locations (i.e. air-water interface, AW; sediment-water interface, SW; buried at a depth of 10?cm, B10; buried at a depth of 20?cm, B20) of littoral zone in Nanhu Lake, China, for 60 days from July to August 2015. Leaf initial quality significantly influenced mass loss and nutrient release except TN (total nitrogen) remaining. Compared to V. natans, T. bispinosa leaves decomposed faster under the same treatments. The decomposition was greatly affected by both leaf chemical quality and the location of deposition. With the increasing depth of vertical locations, leaf biomass loss and nutrient release of both T. bispinosa and V. natans decreased. In addition, initial N:P ratio and cellulose were the major determinants for decomposition in AW and SW treatments while total phenol in B10 and B20. Our results suggest that the combined effect of leaf chemical quality and burial could mediate macrophyte mass loss and release of nutrients and carbon, which in turn can influence organic matter accumulation and nutrient cycling in shallow freshwater lakes.  相似文献   

3.
对中亚热带被冰雪灾害破坏的杉木林地的杉木损害程度及其林地养分分布变化进行了调查,冻雨在杉木枝叶上形成冰柱,造成大量的林木折冠,林木折断的树干部位随胸径的增加而显著升高。树木残体的干质量达25987.6kg·hm-2,树干、枝、叶和皮分别占44%、27%、22%和7%。树木残体中叶、干、枝和皮的N、P和K储量分别占其N、P和K总储量的62%、18%、13%和7%。杉木林地的N、P、K3种养分的积累量为63294.5kg·hm-2,杉木残体的养分仅占杉木林地的0.23%,凋落物层的养分占0.09%,而土壤养分所占比例高达99.68%。3种养分数量在各组分中均为N〉K〉P。雨雪冰冻灾害造成的杉木折干增加了土壤肥力。林冠残体分解引起的养分含量下降,林冠破坏后几乎没有凋落物归还土壤,华南地区频降大雨造成的速效养分流失将使土壤变得贫瘠。  相似文献   

4.
马川  董少锋  莫江明 《生态环境》2012,21(4):647-653
为了了解我国南方森林常见的人为干扰(凋落物收取)活动对生态系统养分循环的影响,研究了鼎湖山马尾松林3种主要树种凋落物分解及其养分释放对凋落物输入量变化的响应。这3种树种分别为马尾松(Pinus massoniana)、荷木(Schimasuperba)和锥栗(Castanopsis chinensis)。凋落物输入量变化分别为凋落物去除(L-)、加倍(L+)和对照(L)3种处理,每种处理25个重复。经过18个月的处理试验,凋落物分解速率及其养分释放随树种、分解阶段和凋落物处理不同而异。荷木、马尾松和锥栗分解物平均残留率分别为0.46±0.01、0.42±0.01、0.40±0.02,其中,荷木与锥栗、马尾松差异性显著。不同处理间的凋落物分解速率差异显著,加倍、对照和去除处理样地凋落物的平均残留率分别为0.51±0.08、0.53±0.09和0.55±0.08。凋落物加倍处理促进了凋落物分解过程中C的释放,而去除凋落物处理则抑制了N、P的释放。以上结果表明,凋落物收取活动不仅直接带走凋落物中的大量养分,而且抑制了凋落物分解及其养分释放。  相似文献   

5.
Abstract: Little is known about the effects of anthropogenic land‐use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land‐use modification gradient stretching from primary forest, secondary forest, natural‐shade cacao agroforest, planted‐shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land‐use modification gradient, but reptile richness and abundance peaked in natural‐shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf‐litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long‐term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.  相似文献   

6.
The nutrient and pesticide abatement efficiency of varying mixtures was examined in a vegetated free water surface constructed wetland. Three different agricultural chemical pollutant mixture conditions were assessed: nutrients only (N and P); pesticides only (atrazine, S-metolachlor and permethrin); and a mixture of nutrients and pesticides. With nutrients only, 672 h nutrient mitigation of 77–91% total phosphorous (TP) and 74–98% total nitrogen (TN) was associated with distance from the injection point and rainfall, whereas with nutrient and pesticide mixtures, 672 h nutrient mitigation of 11–71% TP and 84–98% TN were associated with distance and time. With pesticides only, 672 h pesticide mitigation of 50–99% was associated with distance and time, whereas with nutrients and pesticide mixtures, 672 h pesticide mitigation of 48–99% was associated primarily with distance. Dissipation half-lives were 2–10 times greater for P and 1.5–5 times greater for N when pesticides were present. Pesticide dissipation half-lives showed no clear differences with or without nutrients. While vegetated free water surface constructed wetlands can be effective best management practice tools to trap and abate agricultural run-off during rainfall events, efficiencies can be affected by different types of complex pollutant mixtures and wetland design and implementation should accommodate varying efficiencies.  相似文献   

7.
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH 4 + -N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.
  相似文献   

8.
Microbial nitrogen limitation increases decomposition   总被引:13,自引:0,他引:13  
Craine JM  Morrow C  Fierer N 《Ecology》2007,88(8):2105-2113
With anthropogenic nutrient inputs to ecosystems increasing globally, there are long-standing, fundamental questions about the role of nutrients in the decomposition of organic matter. We tested the effects of exogenous nitrogen and phosphorus inputs on litter decomposition across a broad suite of litter and soil types. In one experiment, C mineralization was compared across a wide array of plants individually added to a single soil, while in the second, C mineralization from a single substrate was compared across 50 soils. Counter to basic stoichiometric decomposition theory, low N availability can increase litter decomposition as microbes use labile substrates to acquire N from recalcitrant organic matter. This "microbial nitrogen mining" is consistently suppressed by high soil N supply or substrate N concentrations. There is no evidence for phosphorus mining as P fertilization increases short- and long-term mineralization. These results suggest that basic stoichiometric decomposition theory needs to be revised and ecosystem models restructured accordingly in order to predict ecosystem carbon storage responses to anthropogenic changes in nutrient availability.  相似文献   

9.
Reed SC  Cleveland CC  Townsend AR 《Ecology》2008,89(10):2924-2934
Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest "natural" source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well.  相似文献   

10.
怀来盆地弃耕地自然恢复过程中土壤养分动态   总被引:5,自引:0,他引:5  
研究了怀来盆地丘陵区弃耕地自然恢复过程中土壤养分的变化规律。采取空间代替时间的方法,确定了代表弃耕地初期阶段、草地阶段和灌丛地阶段的3种样地,通过分层取样测定了土壤有机质、全量养分和速效养分含量。结果表明,全量养分对生态系统恢复的响应与其相应的速效养分明显不同。随着弃耕地的恢复,土壤有机质有明显增加的趋势,P循环和K循环由物质控制向生物控制转换,但速效P在恢复初期增加缓慢。速效N由于耕种期施肥的影响表现出先降低而后增加的特点。全量养分中,只有全N在弃耕地自然恢复中有增加的趋势。灌丛可以在更深的层次上影响土壤养分。植被的恢复与土壤肥力的提高密切相关,这种作用随着植被的恢复而不断增强。  相似文献   

11.
Fine root decomposition is an important way in which nutrients are returned to plantation soil; thus, further study of this process will be helpful for understanding material cycling in forest ecosystems. We investigated a Toona sinensis plantation in the central Sichuan hilly region using litter bags containing T. sinensis fine roots to evaluate the dynamics of fine root decomposition and nutrient release for one year in forest gaps of 50 m2 (L1), 100 m2 (L2), and 150 m2 (L3). The results showed that T. sinensis fine root decomposition was fastest in the first 90 days. As time passed, the decomposition rate slowed. One year later, the residue rate was 75.44%, 73.92%, and 72.07%, respectively. The fine root decomposition rate of L3 was greater than that of L2, which was greater than that of L1. During fine root decomposition, the dynamics of the fine root nutrient concentrations changed. C, P, and K concentrations of the fine roots declined in forest gaps, while N, Ca, and Mg concentrations increased overall in the fine roots. In conclusion, forest gaps had effects on the fine root decomposition and nutrient release of T. sinensis, and different sized forest gaps produced different results. © 2018 Science Press. All rights reserved.  相似文献   

12.
Controls over foliar N:P ratios in tropical rain forests   总被引:13,自引:0,他引:13  
Correlations between foliar nutrient concentrations and soil nutrient availability have been found in multiple ecosystems. These relationships have led to the use of foliar nutrients as an index of nutrient status and to the prediction of broadscale patterns in ecosystem processes. More recently, a growing interest in ecological stoichiometry has fueled multiple analyses of foliar nitrogen:phosphorus (N:P) ratios within and across ecosystems. These studies have observed that N:P values are generally elevated in tropical forests when compared to higher latitude ecosystems, adding weight to a common belief that tropical forests are generally N rich and P poor. However, while these broad generalizations may have merit, their simplicity masks the enormous environmental heterogeneity that exists within the tropics; such variation includes large ranges in soil fertility and climate, as well as the highest plant species diversity of any biome. Here we present original data on foliar N and P concentrations from 150 mature canopy tree species in Costa Rica and Brazil, and combine those data with a comprehensive new literature synthesis to explore the major sources of variation in foliar N:P values within the tropics. We found no relationship between N:P ratios and either latitude or mean annual precipitation within the tropics alone. There is, however, evidence of seasonal controls; in our Costa Rica sites, foliar N:P values differed by 25% between wet and dry seasons. The N:P ratios do vary with soil P availability and/or soil order, but there is substantial overlap across coarse divisions in soil type, and perhaps the most striking feature of the data set is variation at the species level. Taken as a whole, our results imply that the dominant influence on foliar N:P ratios in the tropics is species variability and that, unlike marine systems and perhaps many other terrestrial biomes, the N:P stoichiometry of tropical forests is not well constrained. Thus any use of N:P ratios in the tropics to infer larger-scale ecosystem processes must comprehensively account for the diversity of any given site and recognize the broad range in nutrient requirements, even at the local scale.  相似文献   

13.
Cleveland CC  Reed SC  Townsend AR 《Ecology》2006,87(2):492-503
Terrestrial biosphere-atmosphere CO2 exchange is dominated by tropical forests, so understanding how nutrient availability affects carbon (C) decomposition in these ecosystems is central to predicting the global C cycle's response to environmental change. In tropical rain forests, phosphorus (P) limitation of primary production and decomposition is believed to be widespread, but direct evidence is rare. We assessed the effects of nitrogen (N) and P fertilization on litter-layer organic matter decomposition in two neighboring tropical rain forests in southwest Costa Rica that are similar in most ways, but that differ in soil P availability. The sites contain 100-200 tree species per hectare and between species foliar nutrient content is variable. To control for this heterogeneity, we decomposed leaves collected from a widespread neotropical species, Brosimum utile. Mass loss during decomposition was rapid in both forests, with B. utile leaves losing >80% of their initial mass in <300 days. High organic matter solubility throughout decomposition combined with high rainfall support a model of litter-layer decomposition in these rain forests in which rapid mass loss in the litter layer is dominated by leaching of dissolved organic matter (DOM) rather than direct CO2 mineralization. While P fertilization did not significantly affect mass loss in the litter layer, it did stimulate P immobilization in decomposing material, leading to increased P content and a lower C:P ratio in soluble DOM. In turn, increased P content of leached DOM stimulated significant increases in microbial mineralization of DOM in P-fertilized soil. These results show that, while nutrients may not affect mass loss during decomposition in nutrient-poor, wet ecosystems, they may ultimately regulate CO2 losses (and hence C storage) by limiting microbial mineralization of DOM leached from the litter layer to soil.  相似文献   

14.
Visible light is a major fraction of the solar spectrum; however, information on visible light radiation of macrophyte detritus is lacking. In this study, we conducted a microcosm experiment to assess the effects of visible light radiation on degradation of two litter species: Potamogeton malaianus (P. malaianus) and Phragmites australis (Ph. australis). This research represents an investigation of mass loss, microbial activity and nutrients released over a period of 168 days. Overall, we found that visible light radiation had significant effects on litter decomposition, but it did not affect the microbial activities which degrade cellulose and lignin. The decomposition rate order of the three components in P. malaianus and Ph. australis in treatments was: cellulose?>?hemicellulose?>?lignin. The visible light radiation mainly affected the degradation of lignin, which is the primary compound in litter susceptible to photodegradation. The exposure to visible light radiation up to 17.6?Wm?2 stimulated the dissolved organic carbon release and reduced the molecular weight to less reactive. Meanwhile, no obvious difference in nutrient contents (TP, TN, NO3–N, NO2–N, and NH3–N) was observed among different visible light intensities. The results of this study contribute to better understanding of the photochemical behaviour of macrophyte litter in shallow lakes.  相似文献   

15.
长期氮(N)沉降及其诱导的N、磷(P)养分平衡性对森林生长与生产力的生态反馈效应已成为当前森林生态学研究的前沿与热点,但目前大多研究主要基于已有文献数据整合分析,而缺乏野外原位系统性研究与试验证据.以西南亚高山两种典型人工针叶林——云杉(Picea asperata)林和华山松(Pinus armandii)林为对象,通过野外原位N添加模拟大气N沉降,从叶片养分状态和生理特征变化的角度研究N沉降下该区域树木生长的养分限制特征.结果表明:(1)N添加显著降低了两种人工林叶片P含量,导致云杉和华山松叶片N:P值分别比对照增加了9.9%和5.8%,表明N添加在一定程度上驱动了两种林分生长的P养分限制,且云杉林P养分受限程度更明显;(2)N添加显著降低了云杉林叶片NRE/PRE值,而对华山松林无显著影响,表明N添加下云杉人工林生长受到了明显的P养分限制;(3)N添加显著降低了两种人工林叶片各P组分含量,但显著提高了叶片酸性磷酸酶活性.因此,叶片养分状态和生理特征研究均表明N沉降导致亚高山森林树木生长受到不同程度的P养分限制,且云杉人工林P受限程度比华山松林更为明显,推测N沉降驱动的林分P受限程度可能与两种林分土壤养分初始状况有关;结果可为全球气候变化下森林的适应性管理提供重要科学依据.(图3表2参49)  相似文献   

16.
植物根系分解是养分元素进入土壤的重要途径之一.为了解径级对根系分解过程中养分元素释放的潜在影响,以川西亚高山针叶林中的粗枝云杉(Picea asperata)为对象,采用原位分解试验,研究云杉3个径级(0-2 mm,2-5 mm和5-10 mm)根系分解过程中钾(K)、钠(Na)、钙(Ca)和镁(Mg)元素的浓度、残留率和释放率动态特征.结果表明:4种元素在冬季和生长季节释放模式不同,除Na和Ca外,其他两种元素冬季的释放率大于生长季;径级对根系元素浓度和残留率有显著影响,随着径级的增大,元素浓度通常会降低,元素残留率则有增加的趋势,K和Ca尤为明显;分解两年后,K、Na、Ca和Mg分别释放了84%-87%、62%-70%、2%-26%和34%-56%.综上所述,径级显著影响川西亚高山粗枝云杉根系养分元素的释放特征,径级效应与元素种类和季节动态有关联.(图3表1参51)  相似文献   

17.
水文因素影响稻田氮磷流失的研究进展   总被引:1,自引:1,他引:1  
水文因素为农田氮磷元素的迁移提供了动力和载体,对稻田氮磷元素的流失具有重要影响。利用新型的稻田水分管理模式以代替传统的水分管理模式,对于有效控制面源污染具有重要意义。在综合调研国内外已有研究成果和最新进展的基础上,阐述了稻田氮磷流失特征、传统水分管理模式的弊端,并从新型稻田水分管理模式的种类、削减氮磷流失的效果与机理、与水平衡模型、营养负荷模型等结合应用等几个方面综述了国内外水文因素影响稻田氮磷流失的研究现状。进行稻田土壤吸附氮磷容量及人工调节机制的研究,在部分地区开展流域化水分管理系统研究,以及适用于我国稻田的水平衡模型和营养负荷模型的建立和深入研究应为今后我国关于水文因素影响稻田氮磷流失方面研究的一些方向。  相似文献   

18.
In order to further expound the effect of soil nematodes on litter decomposition in urban forest, this study investigated the responses of soil nematodes communities to litter decomposition by litterbags technology at different mesh sizes in Dalian National Forest Park. Soil nematodes community composition, decomposition rate of litter and nutrient release were also analyzed. It found a total of 4 418 nematodes from 39 genera. Higher relative density of soil nematodes was found in the bags with 0.1 mm mesh size (1.55 individuals and 7.34 orders per g of dry litter) compared to the bags with 0.02 mm mesh size (0.21 individuals and 0.49 orders per g of dry litter). There were very few soil nematodes in the 0.02 mm litter bags. Thus we regarded that soil nematodes only affected the 0.1 mm litter bags. The mass loss rates as well as C and P release rates was higher in litter bags with 0.1 mm mesh size than in those with 0.02 mm mesh size, indicating a significant influence of soil nematodes on mass loss and nutrient release. The contribution of soil nematodes to the litter mass loss was about 24%. The effect of soil nematodes on the nutrient release rates differed among elements. The soil nematodes had a bigger influence on the release rate of N than that of other elements, whereas the influence on K release rate was the lowest. The results showed that soil nematodes communities has a significant effect on the litter decomposition and nutrient release of the forest litter in Dalian city, especially promoting the mass loss rates and N release rates.  相似文献   

19.
Drake DC  Naiman IR  Bechtold JS 《Ecology》2006,87(5):1256-1266
We introduced an 15N-NH4+ tracer to the riparian forest of a salmon-bearing stream (Kennedy Creek, Washington, USA) to quantify the cycling and fate of a late-season pulse of salmon N and, ultimately, mechanisms regulating potential links between salmon abundance and tree growth. The 15N tracer simulated deposition of 7.25 kg of salmon (fresh) to four 50-m2 plots. We added NH4+ (the initial product of salmon carcass decay) and other important nutrients provided by carcasses (P, S, K, Mg, Ca) to soils in late October 2003, coincident with local salmon spawning. We followed the 15N tracer through soil and tree pools for one year. Biological uptake of the 15N tracer occurred quickly: 64% of the 15N tracer was bound in soil microbiota within 14 days, and roots of the dominant riparian tree, western red cedar (Thuja plicata), began to take up 15N tracer within seven days. Root uptake continued through the winter. The 15N tracer content of soil organic matter reached a maximum of approximately 52%, five weeks after the application, and a relative equilibrium of approximately 40% within five months. Six months after the addition, in spring 2004, at least 37% of the 15N tracer was found in tree tissues: approximately 23% in foliage, approximately 11% in roots, and approximately 3% in stems. Within the stems, xylem and phloem sap contained approximately 96% of the tracer N, and approximately 4% was in structural xylem N. After one year, at least 28% of the 15N tracer was still found in trees, and loss from the plots was only approximately 20%. The large portion of tracer N taken up in the fall and reallocated to leaves and stems the following spring provides mechanistic evidence for a one-year-lagged tree-growth response to salmon nutrients. Salmon nutrients have been deposited in the Kennedy Creek system each fall for centuries, but the system shows no evidence of nutrient saturation. Rates of N uptake and retention are a function of site history and disturbance and also may be the result of a legacy effect, in which annual salmon nutrient addition may lead to increased efficiency of nutrient uptake and use.  相似文献   

20.
Resource stoichiometry (C:N:P) is an important determinant of litter decomposition. However, the effect of elemental stoichiometry on the gross rates of microbial N and P cycling processes during litter decomposition is unknown. In a mesocosm experiment, beech (Fagus sylvatica L.) litter with natural differences in elemental stoichiometry (C:N:P) was incubated under constant environmental conditions. After three and six months, we measured various aspects of nitrogen and phosphorus cycling. We found that gross protein depolymerization, N mineralization (ammonification), and nitrification rates were negatively related to litter C:N. Rates of P mineralization were negatively correlated with litter C:P. The negative correlations with litter C:N were stronger for inorganic N cycling processes than for gross protein depolymerization, indicating that the effect of resource stoichiometry on intracellular processes was stronger than on processes catalyzed by extracellular enzymes. Consistent with this, extracellular protein depolymerization was mainly limited by substrate availability and less so by the amount of protease. Strong positive correlations between the interconnected N and P pools and the respective production and consumption processes pointed to feed-forward control of microbial litter N and P cycling. A negative relationship between litter C:N and phosphatase activity (and between litter C:P and protease activity) demonstrated that microbes tended to allocate carbon and nutrients in ample supply into the production of extracellular enzymes to mine for the nutrient that is more limiting. Overall, the study demonstrated a strong effect of litter stoichiometry (C:N:P) on gross processes of microbial N and P cycling in decomposing litter; mineralization of N and P were tightly coupled to assist in maintaining cellular homeostasis of litter microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号