首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems, including changes in state. Sagebrush steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering them. Despite these issues, the majority of studies of fire effects in systems dominated by Artemisia tridentata wyomingensis have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-central Washington (U.S.A.), was one of the largest contiguous areas of sagebrush steppe habitat in the state until large wildfires burned the majority of it in 2000 and 2007. We analyzed data from permanent vegetation transects established in 1996 and resampled in 2002 and 2009. Our objective was to describe how the fires, and subsequent postfire restoration efforts, affected communities' successional pathways. Plant communities differed in response to repeated fire and restoration; these differences could largely be ascribed to the functional traits of the dominant species. Low-elevation communities, previously dominated by obligate seeders, moved furthest from their initial composition and were dominated by weedy, early-successional species in 2009. Higher-elevation sites with resprouting shrubs, native bunchgrasses, and few invasive species were generally more resilient to the effects of repeated disturbances. Shrub cover has been almost entirely removed from ALE, although there was some recovery where communities were dominated by resprouters. Bromus tectorum dominance was reduced by herbicide application in areas where it was previously abundant, but it increased significantly in untreated areas. Several resprouting species, notably Phlox longifolia and Poa secunda, expanded remarkably following competitive release from shrub canopies and/or abundant B. tectorum. Our results suggest that community dynamics can be understood through a state and transition model with two axes (shrub/grass and native/invasive abundance), although such models also need to account for differences in plant functional traits and disturbance regimes. We use our results to develop a conceptual model that will be validated with further research.  相似文献   

2.
Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.  相似文献   

3.
Populations of plants that rely on seeds for recovery from disturbance by fire (obligate seeders) are sensitive to regimes of frequent fire. Obligate seeders are prominent in fire-prone heathlands of southern Australia and South Africa. Population extinction may occur if there are successive fires during a plant's juvenile period. Research on the population biology of obligate seeders has influenced the management of fire in these heath and shrublands, but work on the effects of the spatial variability of fires is lacking. We hypothesize that extinction maybe avoided under an adverse fire frequency if fires are patchy. We present a model that simulates the effects of spatial and temporal variations in fire regimes on the viability of a plant population in a grid landscape. Seedling establishment, maturation, senescence, and seed dispersal determine the presence or absence of plants in each cell. We used values typical of serotinous Banksia species to estimate probability of extinction in relation to fire frequency and size. We examined the sensitivity of predictions to dispersal, senescence, fire frequency, spatial burning pattern and size variance, and the size of the grid. Simulations 200 years in length indicated that extinction probability was lowest when mean fire frequency was intermediate and mean fire size was large. When fire frequency was high, extinction probability was high irrespective of fire size. Senescence was more important than high-frequency fire as a cause of extinction in cells. Interactions between dispersal, fire frequency, and size were complex, indicating that extinction is governed by intercell connectivity. The model indicates that fire patchiness cannot be assumed to ensure avoidance of extinction of populations. Conservation of populations is most likely when fire patchiness is relatively low—when the size of fires is moderate to large and when burned patches are contiguous.  相似文献   

4.
Abstract: Valid modeling of habitats and populations of Greater Sage-Grouse ( Centrocercus urophasianus) is a critical management need because of increasing concern about population viability. Consequently, we evaluated the performance of two models designed to assess landscape conditions for Greater Sage-Grouse across 13.6 million ha of sagebrush steppe in the interior Columbia Basin and adjacent portions of the Great Basin of the western United States (referred to as the basin). The first model, the environmental index model, predicted conditions at the scale of the subwatershed (mean size of approximately 7800 ha) based on inputs of habitat density, habitat quality, and effects of human disturbance. Predictions ranged on a continuous scale from 0 for lowest environmental index to 2 for optimal environmental index. The second model, the population outcome model, predicted the composite, range-wide conditions for sage grouse based on the contribution of environmental index values from all subwatersheds and measures of range extent and connectivity. Population outcomes were expressed as five classes (A through E) that represented a gradient from continuous, well-distributed populations (outcome A) to sparse, highly isolated populations with a high likelihood of extirpation (outcome E). To evaluate performance, we predicted environmental index values and population outcome classes in areas currently occupied by sage grouse versus areas where extirpation has occurred. Our a priori expectations were that models should predict substantially worse environmental conditions ( lower environmental index) and a substantially higher probability of extirpation ( lower population outcome class) in extirpated areas. Results for both models met these expectations. For example, a population outcome of class E was predicted for extirpated areas, as opposed to class C for occupied areas. These results suggest that our models provided reliable landscape predictions for the conditions tested. This finding is important for conservation planning in the basin, where the models were used to evaluate management of federal lands for sage grouse.  相似文献   

5.
Examining the potential for ecological restoration is important in areas where anthropogenic disturbance has degraded forest landscapes. However, the conditions under which restoration of degraded tropical dry forests (TDF) might be achieved in practice have not been determined in detail. In this study, we used LANDIS-II, a spatially explicit model of forest dynamics, to assess the potential for passive restoration of TDF through natural regeneration. The model was applied to two Mexican landscapes under six different disturbance regimes, focusing on the impact of fire and cattle grazing on forest cover, structure and composition. Model results identified two main findings. First, tropical dry forests are more resilient to anthropogenic disturbance than expected. Results suggested that under both a scenario of small, infrequent fires and a scenario of large, frequent fires, forest area can increase relatively rapidly. However, forest structure and composition differed markedly between these scenarios. After 400 years, the landscape becomes increasingly occupied by relatively shade-tolerant species under small, infrequent fires, but only species with both relatively high shade tolerance and high fire tolerance can thrive under conditions with large, frequent fires. Second, we demonstrated that different forms of disturbance can interact in unexpected ways. Our projections revealed that when grazing acts in combination with fire, forest cover, structure and composition vary dramatically depending on the frequency and extent of the fires. Results indicated that grazing and fire have a synergistic effect causing a reduction in forest cover greater than the sum of their individual effects. This suggests that passive landscape-scale restoration of TDF is achievable in both Mexican study areas only if grazing is reduced, and fires are carefully managed to reduce their frequency and intensity.  相似文献   

6.
Abstract: The Centennial Sandhills of southwest Montana support a mosaic of shrub-dominated vegetation in various stages of succession. The persistence of rare plants and plant communities depends on the presence of both early and late seral vegetation. Disturbances by fire, grazing, and burrowing are important processes opposing plant succession and influencing vegetation dynamics. We sampled vegetation in wind erosion (blowout), deposition, and stabilized sites on upper and lower slopes. Canonical correspondence analysis was employed to describe vegetation changes that occur during succession as soil organic matter and plant canopy cover increase and bare soil decreases. We used information on the effects of fire, ungulate grazing, and pocket gopher (  Thomomys talpoides ) burrowing, and our empirically derived successional sequence, to develop a model of sandhills vegetation dynamics operating at local and regional scales. The model suggests that fire followed by intense ungulate grazing may be the only way to restore early seral vegetation to areas of low topographic relief. In areas of high topographic relief, restoring presettlement fire frequency should be adequate to maintain pocket gopher habitat and thus a high proportion of early seral vegetation. These hypotheses should be tested through a process of adaptive management aimed at sustaining a mosaic of early and late seral vegetation capable of supporting the full spectrum of native species.  相似文献   

7.
We studied northern flying squirrel (Glaucomys sabrinus) demography in the eastern Washington Cascade Range to test hypotheses about regional and local abundance patterns and to inform managers of the possible effects of fire and fuels management on flying squirrels. We quantified habitat characteristics and squirrel density, population trends, and demography in three typical forest cover types over a four-year period. We had 2034 captures of flying squirrels over 41 000 trap nights from 1997 through 2000 and marked 879 squirrels for mark-recapture population analysis. Ponderosa pine (Pinus ponderosa) forest appeared to be poorer habitat for flying squirrels than young or mature mixed-conifer forest. About 35% fewer individuals were captured in open pine forest than in dry mixed-conifer Douglas-fir (Pseudotsuga menziesii) and grand fir (Abies grandis) forests. Home ranges were 85% larger in pine forest (4.6 ha) than in mixed-conifer forests (2.5 ha). Similarly, population density (Huggins estimator) in ponderosa pine forest was half (1.1 squirrels/ha) that of mixed-conifer forest (2.2 squirrels/ha). Tree canopy cover was the single best correlate of squirrel density (r = 0.77), with an apparent threshold of 55% canopy cover separating stands with low- from high-density populations. Pradel estimates of annual recruitment were lower in open pine (0.28) than in young (0.35) and mature (0.37) forest. High recruitment was most strongly associated with high understory plant species richness and truffle biomass. Annual survival rates ranged from 45% to 59% and did not vary among cover types. Survival was most strongly associated with understory species richness and forage lichen biomass. Maximum snow depth had a strong negative effect on survival. Rate of per capita increase showed a density-dependent response. Thinning and prescribed burning in ponderosa pine and dry mixed conifer forests to restore stable fire regimes and forest structure might reduce flying squirrel densities at stand levels by reducing forest canopy, woody debris, and the diversity or biomass of understory plants, truffles, and lichens. Those impacts might be ameliorated by patchy harvesting and the retention of large trees, woody debris, and mistletoe brooms. Negative stand-level impacts would be traded for increased resistance and resilience of dry-forest landscapes to now-common, large-scale stand replacement fires.  相似文献   

8.
Human-imprinted ruffed grouse (Bonasa umbellus) chicks were used to evaluate grouse brood food and cover conditions on reclaimed surface mines in northern West Virginia. Reclaimed surface-mined areas did not provide the quality of habitat for ruffed grouse chicks that unmined land provided. On the surface-mined areas, grasslegume reclamation provided the poorest cover and next to the lowest feeding rates. Of the surface-mined areas a 25-year-old reclaimed mine planted to autumn olive had canopy provided a more favorable micro-climate for insects and herbaceous vegetation was established around the edge. Planting rows of shrubs in addition to the current practice of planting grasses and legumes on surface-mined areas is suggested to create ruffed grouse brood habitat.  相似文献   

9.
Temporal variability of forest fires in eastern Amazonia   总被引:1,自引:0,他引:1  
Widespread occurrence of fires in Amazonian forests is known to be associated with extreme droughts, but historical data on the location and extent of forest fires are fundamental to determining the degree to which climate conditions and droughts have affected fire occurrence in the region. We used remote sensing to derive a 23-year time series of annual landscape-level burn scars in a fragmented forest of the eastern Amazon. Our burn scar data set is based on a new routine developed for the Carnegie Landsat Analysis System (CLAS), called CLAS-BURN, to calculate a physically based burn scar index (BSI) with an overall accuracy of 93% (Kappa coefficient 0.84). This index uses sub-pixel cover fractions of photosynthetic vegetation, non-photosynthetic vegetation, and shade/burn scar spectral end members. From 23 consecutive Landsat images processed with the CLAS-BURN algorithm, we quantified fire frequencies, the variation in fire return intervals, and rates of conversion of burned forest to other land uses in a 32 400 km2 area. From 1983 to 2007, 15% of the forest burned; 38% of these burned forests were subsequently deforested, representing 19% of the area cleared during the period of observation. While 72% of the fire-affected forest burned only once during the 23-year study period, 20% burned twice, 6% burned three times, and 2% burned four or more times, with the maximum of seven times. These frequencies suggest that the current fire return interval is 5-11 times more frequent than the estimated natural fire regime. Our results also quantify the substantial influence of climate and extreme droughts caused by a strong El Ni?o Southern Oscillation (ENSO) on the extent and likelihood of returning forest fires mainly in fragmented landscapes. These results are an important indication of the role of future warmer climate and deforestation in enhancing emissions from more frequently burned forests in the Amazon.  相似文献   

10.
Abstract: In East Africa fire and grazing by wild and domestic ungulates maintain savannas, and pastoralists historically set fires and herded livestock through the use of temporary corrals called bomas. In recent decades traditional pastoral practices have declined, and this may be affecting biodiversity. We investigated the effects of prescribed fires and bomas on savanna bird communities in East Africa during the first and second dry seasons of the year (respectively before and after the rains that mark the onset of breeding for most birds). We compared abundance, richness, and community composition on 9‐ha burned plots, recently abandoned bomas, and control plots in the undisturbed matrix habitat over a 3‐year period. Generally, recently burned areas and abandoned bomas attracted greater densities of birds and had different community assemblages than the surrounding matrix. The effects of disturbances were influenced by interactions between primary productivity, represented by the normalized difference vegetation index, and time. Bird densities were highest and a greater proportion of species was observed on burned plots in the months following the fires. Drought conditions equalized bird densities across treatments within 1 year, and individuals from a greater proportion of species were more commonly observed on abandoned bomas. Yearly fluctuations in abundance were less pronounced on bomas than on burns, which indicate that although fire may benefit birds in the short term, bomas may have a more‐lasting positive effect and provide resources during droughts. Several Palearctic migrants were attracted to burned plots regardless of rainfall, which indicates continued fire suppression may threaten their already‐declining populations. Most notably, the paucity of birds observed on the controls suggests that the current structure of the matrix developed as a result of fire suppression. Traditional pastoralism appears critical to the maintenance of avian diversity in these savannas.  相似文献   

11.
Algorithms relating remotely sensed woody cover to biomass are often the basis for large-scale inventories of aboveground carbon stocks. However, these algorithms are commonly applied in a generic fashion without consideration of disturbances that might alter vegetation structure. We compared field and remote sensing estimates of woody biomass on savannas with contrasting disturbance (fire) histories and assessed potential errors in estimating woody biomass from cover without considering fire history. Field surveys quantified multilayer cover (MLC) of woody and succulent plants on sites experiencing wildfire in 1989 or 1994 and on nearby unburned (control) sites. Remote sensing estimates of the woody cover fraction (WCF) on burned and control sites were derived from contemporary (2005) dry-season Landsat Thematic Mapper imagery (during a period when herbaceous cover was senescent) using a probabilistic spectral mixture analysis model. Satellite WCF estimates were compared to field MLC assessments and related to aboveground biomass using allometry. Field-based MLC and remotely sensed WCFs both indicated that woody cover was comparable on control areas and areas burned 11-16 years ago. However, biomass was approximately twofold higher on control sites. Canopy cover was a strong predictor of woody biomass on burned and control areas, but fire history significantly altered the linear cover-biomass relationship on control plots to a curvilinear relationship on burned plots. Results suggest predictions of woody biomass from "generic" two-dimensional (2-D) cover algorithms may underestimate biomass in undisturbed stands and overestimate biomass in stands recovering from disturbance. Improving the accuracy of woody-biomass estimates from field and/or remotely sensed cover may therefore require disturbance-specific models or detection of vegetation height and transforming 2-D vegetation cover to 3-D vegetation volume.  相似文献   

12.
Fire disturbance is a primary agent of change in the mediterranean-climate chaparral shrublands of southern California, USA. However, fire frequency has been steadily increasing in coastal regions due to ignitions at the growing wildland-urban interface. Although chaparral is resilient to a range of fire frequencies, successively short intervals between fires can threaten the persistence of some species, and the effects may differ according to plant functional type. California shrublands support high levels of biological diversity, including many endangered and endemic species. Therefore, it is important to understand the long-term effects of altered fire regimes on these communities. A spatially explicit simulation model of landscape disturbance and succession (LANDIS) was used to predict the effects of frequent fire on the distribution of dominant plant functional types in a study area administered by the National Park Service. Shrubs dependent on fire-cued seed germination were most sensitive to frequent fire and lost substantial cover to other functional types, including drought-deciduous subshrubs that typify coastal sage scrub and nonnative annual grasses. Shrubs that resprout were favored by higher fire frequencies and gained in extent under these treatments. Due to this potential for vegetation change, caution is advised against the widespread use of prescribed fire in the region.  相似文献   

13.
Climatic Change, Wildfire, and Conservation   总被引:11,自引:0,他引:11  
Abstract:  Climatic variability is a dominant factor affecting large wildfires in the western United States, an observation supported by palaeoecological data on charcoal in lake sediments and reconstructions from fire-scarred trees. Although current fire management focuses on fuel reductions to bring fuel loadings back to their historical ranges, at the regional scale extreme fire weather is still the dominant influence on area burned and fire severity. Current forecasting tools are limited to short-term predictions of fire weather, but increased understanding of large-scale oceanic and atmospheric patterns in the Pacific Ocean (e.g., El Niño Southern Oscillation, Pacific Decadal Oscillation) may improve our ability to predict climatic variability at seasonal to annual leads. Associations between these quasi-periodic patterns and fire occurrence, though evident in some regions, have been difficult to establish in others. Increased temperature in the future will likely extend fire seasons throughout the western United States, with more fires occurring earlier and later than is currently typical, and will increase the total area burned in some regions. If climatic change increases the amplitude and duration of extreme fire weather, we can expect significant changes in the distribution and abundance of dominant plant species in some ecosystems, which would thus affect habitat of some sensitive plant and animal species. Some species that are sensitive to fire may decline, whereas the distribution and abundance of species favored by fire may be enhanced. The effects of climatic change will partially depend on the extent to which resource management modifies vegetation structure and fuels.  相似文献   

14.
The effect of sheep grazing on species richness, higher order diversity measures, inequality, species composition, functional diversity and allometric relationships at a coastal dune heathland site was investigated. After a prescribed fire in 2002, the site was divided into two parts, where one of the parts was unmanaged and the other part was fenced and grazed by sheep. Sheep grazing had a positive effect on species richness as well as a significant positive effect on the functional diversity at the coastal dune heathland site. Generally, the cover of dwarf shrubs was negatively affected by grazing, whereas the cover of sedges and grasses was positively affected by grazing. There is a need for comparative investigations of the effect of different management methods not only on floristic biodiversity, but on all relevant kinds of biodiversity as well as on soil structure, soil chemistry and habitat micro- and macrostructure. Consequently, we advocate the initiation of an international systematic investigation of the effect of different management methods.  相似文献   

15.
The HFire fire regime model was used to simulate the natural fire regime (prior to European settlement) on Kennedy Space Center, Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida. Model simulations were run for 500 years and the model was parameterized using information generated from previously published empirical studies on these properties (e.g., lightning fire ignition frequencies and ignition seasonality). A mosaic pattern of frequent small fires dominated this fire regime with rare but extremely large fires occurring during dry La Niña periods. This simulated fire size distribution very closely matched the previously published fire size distribution for lightning ignitions on these properties. A sensitivity analysis was performed to establish which parameters were most influential and the range of variation surrounding empirically parameterized model output. Dead fuel moisture and wind speed had the largest influence on model outcome. A wide range of variance was observed surrounding the composite simulation with the least being 6% in total burn frequency and the greatest being 49% in total area burned. Because simulation modeling is the best option for fire regime reconstruction in many rapidly growing shrub dominated systems, these results will be of interest to scientists and fire managers for delineating the natural fire regime on these properties, the southeastern United States and other fire adapted shrub systems worldwide.  相似文献   

16.
Modeling Prescribed Surface-Fire Regimes for Pinus strobus Conservation   总被引:2,自引:0,他引:2  
Abstract:  We developed a simple model of   Pinus strobus L. stand dynamics to compare the impacts of different temporal arrangements of surface fires designed to reflect the application of fire as both an essential ecosystem process (natural fire) and as an efficient means of producing specific habitat features or other values (optimal fire). We used a stochastic simulation model of fire processes to estimate the mean fire-return interval that would maximize stand structural diversity. We investigated trade-offs between structural diversity and temporal population stability associated with changes in the fire interval and used a deterministic version of the model to explore the effects of scheduling fires at fixed intervals. In stochastic simulations, maximum structural diversity occurred at intermediate levels of disturbance (40-year mean fire interval). When fires were scheduled at fixed intervals, a longer, 100-year return interval maximized diversity. Mean fire-return interval was a mitigating factor in the diversity-stability relationship, which changed from positive to negative as the fire interval was reduced progressively from 250 to 5 years. As an alternative to scheduling fires at specified mean intervals, we developed a goal-programming model (a form of linear programming model) and used it to identify an optimal fire schedule for achieving habitat and visual-quality objectives. In comparison with the 40-year stochastic mean fire interval, which maximized structural diversity, the optimal schedule produced comparable levels of both diversity and fire frequency. Our results show how simulation and goal-programming models can be used to evaluate prescribed fire-scheduling alternatives and to explore the comparative advantages of natural and optimal fire-management approaches.  相似文献   

17.
Abstract:  Our understanding of fire and grazing is largely based on small-scale experimental studies in which treatments are uniformly applied to experimental units that are considered homogenous. Any discussion of an interaction between fire and grazing is usually based on a statistical approach that ignores the spatial and temporal interactions on complex landscapes. We propose a new focus on the ecological interaction of fire and grazing in which each disturbance is spatially and temporally dependent on the other and results in a landscape where disturbance is best described as a shifting mosaic (a landscape with patches that vary with time since disturbance) that is critical to ecological structure and function of many ecosystems. We call this spatiotemporal interaction pyric herbivory (literal interpretation means grazing driven by fire). Pyric herbivory is the spatial and temporal interaction of fire and grazing, where positive and negative feedbacks promote a shifting pattern of disturbance across the landscape. We present data we collected from the Tallgrass Prairie Preserve in the southern Great Plains of North America that demonstrates that the interaction between free-roaming bison ( Bison bison ) and random fires promotes heterogeneity and provides the foundation for biological diversity and ecosystem function of North American and African grasslands. This study is different from other studies of fire and grazing because the fires we examined were random and grazing animals were free to roam and select from burned and unburned patches. For ecosystems across the globe with a long history of fire and grazing, pyric herbivory with any grazing herbivore is likely more effective at restoring evolutionary disturbance patterns than a focus on restoring any large vertebrate while ignoring the interaction with fire and other disturbances .  相似文献   

18.
We constructed a model of marten population dynamics and used it to investigate extinction processes across a wide range of parameter values. The model was based on rules governing the behavior and physiology of individual martens and focused on energy balance. Spatial dynamics and demographic and environmental stochasticity were incorporated. The outcome was the probability of extinction and quasiextinction (20 females remaining) over 500 years. Three qualitative forms of extinction were delineated. The first was deterministic extinction, associated with those parameter combinations leading to a negative population growth rate. The second was probabilistic extinction in systems with a strong positive growth rate but restricted population size due to habitat constraint. The transition from 100% persistence to 100% quasiextinction, as the input habitat size was decreased, was abrupt. The final form of extinction was in systems with a growth rate of approximately zero. Prey availability maintained an upper limit on these populations, but otherwise fluctuations in population size were essentially random, leading to nontrivial probabilities of extinction in even relatively large populations. A number of issues requiring further empirical research were identified. These included the relationship between habitat quality and marten reproduction, dispersal patterns and dispersal mortality, the effect of habitat edge on marten reproduction and mortality, and the characterization of the severity and frequency of catastrophic mortality as experienced by marten populations.  相似文献   

19.
Thaxton JM  Platt WJ 《Ecology》2006,87(5):1331-1337
Small-scale variation in fire intensity and effects may be an important source of environmental heterogeneity in frequently burned plant communities. We hypothesized that variation in fire intensity resulting from local differences in fuel loads produces heterogeneity in pine savanna ground cover by altering shrub abundance. To test this hypothesis, we experimentally manipulated prefire fuel loads to mimic naturally occurring fuel-load heterogeneity associated with branch falls, needle fall near large pines, and animal disturbances in a frequently burned longleaf pine (Pinus palustris) savanna in Louisiana, USA. We applied one of four fuel treatments (unaltered control, fine-fuel removal, fine-fuel addition, wood addition) to each of 540 (1-m2) quadrats prior to growing-season prescribed fires in each of two years (1999 and 2001). In both years fuel addition increased (and fuel removal decreased) fuel consumption and maximum fire temperatures relative to unaltered controls. Fuel addition, particularly wood, increased damage to shrubs, increased shrub mortality, and decreased resprout density relative to controls. We propose that local variation in fire intensity may contribute to maintenance of high species diversity in pine savannas by reducing shrub abundance and creating openings in an otherwise continuous ground cover.  相似文献   

20.
Canopy-forming plants and algae commonly contribute to spatial variation in habitat complexity for associated organisms and thereby create a biotic patchiness of communities. In this study, we tested for interaction effects between biotic habitat complexity and resource availability on net biomass production and species diversity of understory macroalgae by factorial field manipulations of light, nutrients, and algal canopy cover in a subtidal rocky-shore community. Presence of algal canopy cover and/or artificial shadings limited net biomass production and facilitated species diversity. Artificial shadings reduced light to levels similar to those under canopy cover, and net biomass production was significantly and positively correlated to light availability. Considering the comparable and dependent experimental effects from shadings and canopy cover, the results strongly suggest that canopy cover controlled net biomass production and species diversity by limiting light and thereby limiting resource availability for community production. Canopy cover also controlled experimental nutrient effects by preventing a significant increase in net biomass production from nutrient enrichment recorded in ambient light (no shading). Changes in species diversity were mediated by changes in species dominance patterns and species evenness, where canopy cover and shadings facilitated slow-growing crust-forming species and suppressed spatial dominance by Fucus vesiculosus, which was the main contributor to net production of algal biomass. The demonstrated impacts of biotic habitat complexity on biomass production and local diversity contribute significantly to understanding the importance of functionally important species and biodiversity for ecosystem processes. In particular, this study demonstrates how loss of a dominant species and decreased habitat complexity change the response of the remaining assembly to resource loading. This is of potential significance for marine conservation since resource loading often promotes low habitat complexity and canopy species are among the first groups lost in degraded aquatic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号