首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  The acceleration of processes such as forest fragmentation and forest fires in landscapes under intense human pressures makes it imperative to quantify and understand the effects of these processes on the conservation of biodiversity in these landscapes. We combined information from remote-sensing imagery and ground maps of all fires in the Mudumalai Wildlife Sanctuary (MWLS) in the Western Ghats of India over 14 years (1989–2002). These spatial data on fire occurrence were integrated with maps of vegetation types found in the MWLS to examine fire conditions in each. We calculated the average fire-return interval for each of the vegetation types individually and for the MWLS as a whole. Using vegetation data from the larger Nilgiri Biosphere Reserve and the entire Western Ghats region, we conservatively estimated fire-frequency information for these larger regions. Because the MWLS does not contain tropical evergreen or montane forests, we were unable to estimate fire conditions in these forest types, which represent 31% of all Western Ghats vegetation cover. For the MWLS, all vegetation types had average fire-return intervals of <7 years, and the sanctuary as a whole had a fire-return interval of 3.3 years. Compared with a 13-year MWLS fire data set from 1909–1921, this represents a threefold increase in fire frequency over the last 80 years. We estimated average fire-return intervals of roughly 5 years for both the larger Nilgiri Biosphere Reserve and the entire Western Ghats region. Given other recent reports, the estimated fire frequencies for the Western Ghats forests outside protected reserves are conservative. We conclude that the current fire regime of the Western Ghats poses a severe and persistent conservation threat to forests both within and outside protected reserves.  相似文献   

2.
Abstract:  Approaches to fire management in the savanna ecosystems of the 2-million ha Kruger National Park, South Africa, have changed several times over the past six decades. These approaches have included regular and flexible prescribed burning on fixed areas and a policy that sought to establish a lightning-dominated fire regime. We sought to establish whether changes in management induced the desired variability in fire regimes over a large area. We used a spatial database of information on all fires in the park between 1957 and 2002 to determine elements of the fire regime associated with each management policy. The area that burned in any given year was independent of the management approach and was strongly related to rainfall (and therefore grass fuels) in the preceding 2 years. On the other hand, management did affect the spatial heterogeneity of fires and their seasonal distribution. Heterogeneity was higher at all scales during the era of prescribed burning, compared with the lightning-fire interval. The lightning-fire interval also resulted in a greater proportion (72% vs. 38%) of the area burning in the dry season. Mean fire-return intervals varied between 5.6 and 7.3 years, and variability in fire-return intervals was strongly influenced by the sequencing of annual rainfall rather than by management. The attempt at creating a lightning-dominated fire regime failed because most fires were ignited by humans, and the policy has been replaced by a more pragmatic approach that combines flexible prescribed burning with lightning-ignited fires.  相似文献   

3.
《Ecological modelling》2004,180(1):41-56
Landscape simulation models are widely used to study the behavior of ecological systems. As computing power has increased, these models have become more complex and incorporated more realistic spatial representations of landscape patterns and ecological processes. The goal of this research was to examine the sensitivity of simulated landscape patterns to fundamental spatial modeling assumptions. The LANDIS simulator was parameterized for forests of the Georgia Piedmont and used to model landscape-scale community dynamics at fire return intervals from 20 to 100 years. A base scenario incorporating localized seed dispersal along with landform-related variation in species establishment rates and disturbance regimes was contrasted with three alternative scenarios. The uniform habitat scenario applied the same set of species establishment coefficients across all landforms. The uniform dispersal scenario removed the effects of seed source abundance and pattern on species establishment. The uniform disturbance scenario assumed identical disturbance regimes on all landforms.At the shortest fire return intervals, fire severities were low and the stand age distribution was dominated by older forests. At longer fire return intervals, fire severities were high and the stand age distribution was skewed toward younger forests. Species composition generally followed a gradient from fire-resistant species at short fire return intervals to fire-sensitive species at longer fire return intervals. However, some species exhibited bimodal distributions with high abundances at both short and long fire return intervals. Landscape responses to fire were similar in the uniform habitat scenario and the base scenario. Communities were less sensitive to fire return interval and had more fire-sensitive species in the uniform dispersal scenario than in the base scenario. Species composition in the uniform disturbance scenario was similar to the base scenario for the longest fire-intervals, but was more sensitive to changes in the fire regime at shorter fire return intervals. In models of Piedmont forest landscapes, accurate spatial representations of dispersal and fire regime heterogeneity are essential for predicting landscape-scale species composition under changing fire regimes. In contrast, the precise spatial representation of species–habitat relationships may be considerably less important.  相似文献   

4.
《Ecological modelling》2003,165(1):23-47
This paper describes the development, evaluation, and use of a model that simulates the effect of grazing and fire on temporal and spatial aspects of sagebrush community vegetation and sage grouse population dynamics. The model is represented mathematically as a discrete-time, stochastic compartment model based on difference equations with a time interval of 1 week. In the model, sheep graze through sage grouse breeding habitat during spring and fall, and different portions of the area can burn at different frequencies, creating a habitat mosaic of burned and unburned areas.The model was evaluated by examining predictions of (1) growth of sagebrush canopy cover after fire, (2) seasonal dynamics of grass and forb biomass under historical environmental conditions, and (3) sage grouse population dynamics associated with selected sagebrush canopy covers. Simulated changes in sagebrush canopy cover following fire correspond well with qualitative reports of long-term trends, simulated seasonal dynamics of herbaceous biomass correspond well with field data, and simulated responses of sage grouse population size and age structure to changing sagebrush canopy cover correspond well to qualitative field observations.Simulation results suggest that large fires occurring at high frequencies may lead to the extinction of sage grouse populations, whereas fires occurring at low frequencies may benefit sage grouse if burned areas are small and sheep grazing is absent. Sheep grazing may contribute to sage grouse population decline, but is unlikely to cause extinction under fire regimes that are favorable to sage grouse.  相似文献   

5.
A non-linear, deterministic model of biomass accumulation and nitrogen cycling in an even-aged, pure jack pine (Pinus banksiana Lamb.) stand was developed and used to explore effects of fire intensity and frequency of burning on the long-term nitrogen cycle. Given the model structure and assumptions, simulated results showed that successive fires at both light and severe fire intensities caused gradual depletion of the amount of N accumulated in the vegetation layers. Fires also reduced the amount of N in the litter and soil pools, with the initially large soil organically-bound N pool showing a particularly sharp decline, and decreased the productivity of the simulated stand. A frequency of one fire per 20 years for five successive burns produced declines of N accumulated in the tree stratum of 50–75% (depending upon fire intensity) in comparison with the undisturbed system at a corresponding age, whereas a 100-year frequency produced decreases of 10–22%. Similarly, declines in litter layer N were 54–72% at a 40-year frequency, compared with 30–55% at a 100-year frequency. The simulated results also suggested that both the stand age when burning occurred and the fire frequency were important, because distinctive patterns of accumulation and decline of N in ecosystem pools existed with increasing stand age. A serious lack of information regarding processes inherent in the model was found to exist in certain cases. Important processes which are currently poorly quantified include: (1) the factors controlling rates of tree growth; (2) the relation of foliar and other tissue N to soil N concentrations and foliar translocation; (3) the relation of forest floor conditions to decomposition and stand structural characteristics; and (4) the controls of a variety of soil N transformations, transfers, leaching and decomposition rates. Because of this basic lack of information and the great dependence of the model's behavior on these processes, the present version of the model is not suitable for real-world prediction. The model does have use as a means of combining hypotheses about a system into an explicit structure and examining the collective consequences of this, as well as pointing out future research needs for the system.  相似文献   

6.
Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.  相似文献   

7.
A model was developed to represent the establishment of a fire-sensitive woody species from seeds and subsequent survival and growth through five size classes. Simulations accurately represent structural changes associated with increased density and cover of the fire-sensitive Ashe juniper (Juniperus ashei, Buckholz) and provide substantial evidence for multiple steady states and ecological thresholds. Without fire, Ashe juniper increases and herbaceous biomass decreases at exponential rates until a dense-canopy woodland is formed after approximately 75 years. Maintenance of a grass-dominated community for 150 years requires cool-season fires at a return interval of less than 25 years. When initial cool-season fires are delayed or return intervals are increased, herbaceous biomass (fuel) decreases below a threshold and changes from grassland to woodland become irreversible. With warm-season fires, longer return intervals maintain grass dominance, and under extreme warm-season conditions even nearly closed-canopy stands can be opened with catastrophic wildfires.  相似文献   

8.
Temporal variability of forest fires in eastern Amazonia   总被引:1,自引:0,他引:1  
Widespread occurrence of fires in Amazonian forests is known to be associated with extreme droughts, but historical data on the location and extent of forest fires are fundamental to determining the degree to which climate conditions and droughts have affected fire occurrence in the region. We used remote sensing to derive a 23-year time series of annual landscape-level burn scars in a fragmented forest of the eastern Amazon. Our burn scar data set is based on a new routine developed for the Carnegie Landsat Analysis System (CLAS), called CLAS-BURN, to calculate a physically based burn scar index (BSI) with an overall accuracy of 93% (Kappa coefficient 0.84). This index uses sub-pixel cover fractions of photosynthetic vegetation, non-photosynthetic vegetation, and shade/burn scar spectral end members. From 23 consecutive Landsat images processed with the CLAS-BURN algorithm, we quantified fire frequencies, the variation in fire return intervals, and rates of conversion of burned forest to other land uses in a 32 400 km2 area. From 1983 to 2007, 15% of the forest burned; 38% of these burned forests were subsequently deforested, representing 19% of the area cleared during the period of observation. While 72% of the fire-affected forest burned only once during the 23-year study period, 20% burned twice, 6% burned three times, and 2% burned four or more times, with the maximum of seven times. These frequencies suggest that the current fire return interval is 5-11 times more frequent than the estimated natural fire regime. Our results also quantify the substantial influence of climate and extreme droughts caused by a strong El Ni?o Southern Oscillation (ENSO) on the extent and likelihood of returning forest fires mainly in fragmented landscapes. These results are an important indication of the role of future warmer climate and deforestation in enhancing emissions from more frequently burned forests in the Amazon.  相似文献   

9.
《Ecological modelling》2006,190(1-2):190-204
The objective of this study was to develop a forest production model for determining optimal density management regimes for upland black spruce (Picea mariana (Mill.) B.S.P.) stands based on the maximization of net production. This objective was attained via the development of an allometrically extended stand density management diagram (SDMD), which was used to describe the mass dynamics of biotic and abiotic tree components by initial density regime, site quality and fine root turnover rate. Specifically, periderm, stem, branch, foliage and abiotic crown masses were estimated employing multivariate allometric regression functions based on data derived from 125 destructively sampled trees. Below-ground mass estimates were obtained using generalized allometric relationships derived from the literature. Abiotic masses included three basic components: (1) allometrically estimated retained woody debris consisting of abiotic crown structures that remained attached to the main stem; (2) fine woody debris arising from needle loss, root turnover, and abscission of modular components; (3) coarse woody debris arising from trees which incurred mortality through self-thinning. The algorithmic version of the model (1) simultaneously calculates periodic annual net production estimates (Mg/ha/year) by 10-year intervals over 100-year rotation lengths for eight initial density conditions, (2) given (1), determines the occupancy level for which net production is maximized for each stage of development (decade interval), and (3) given (2), determines the optimal size–density trajectory within the context of a SDMD. Additionally, results derived from multiple model simulations employing a range of initial densities (1500, 1650,…, 16,350 stems/ha), site indices (9, 10,…, 15 m) and fine root turnover rates (0.2, 0.3,…,0.8 proportion/year), indicated that black spruce productivity was maximized when site occupancies were maintained slightly below the zone of imminent competition mortality. Instructions for acquiring an executable version of the model through the Internet are also included.  相似文献   

10.
Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire size and frequency from 1910 to 2008 (all fires > 40 ha), and the percentage of high-severity in fires from 1987 to 2008 (all fires > 400 ha) on the four national forests of northwestern California. During 1910-2008, mean and maximum fire size and total annual area burned increased, but we found no temporal trend in the percentage of high-severity fire during 1987-2008. The time series of severity data was strongly influenced by four years with region-wide lightning events that burned huge areas at primarily low-moderate severity. Regional fire rotation reached a high of 974 years in 1984 and fell to 95 years by 2008. The percentage of high-severity fire in conifer-dominated forests was generally higher in areas dominated by smaller-diameter trees than in areas with larger-diameter trees. For Douglas-fir forests, the percentage of high-severity fire did not differ significantly between areas that re-burned and areas that only burned once (10% vs. 9%) when re-burned within 30 years. Percentage of high-severity fire decreased to 5% when intervals between first and second fires were > 30 years. In contrast, in both mixed-conifer and fir/high-elevation conifer forests, the percentage of high-severity fire was less when re-burned within 30 years compared to first-time burned (12% vs. 16% for mixed conifer; 11% vs. 19% for fir/high-elevation conifer). Additionally, the percentage of high-severity fire did not differ whether the re-burn interval was less than or greater than 30 years. Years with larger fires and greatest area burned were produced by region-wide lightning events, and characterized by less winter and spring precipitation than years dominated by smaller human-ignited fires. Overall percentage of high-severity fire was generally less in years characterized by these region-wide lightning events. Our results suggest that, under certain conditions, wildfires could be more extensively used to achieve ecological and management objectives in northwestern California.  相似文献   

11.
The effects of the risk of fire or other unpredictable catastrophe on the optimal rotation period of a forest stand are investigated. It is demonstrated that when fires occur in a time-independent Poisson process, and cause total destruction, the policy effect of the fire risk is equivalent to adding a premium to the discount rate that would be operative in a risk-free environment. Other cases are also investigated and in each a modified form of the Faustmann formula is derived and a “marginal” economic interpretation given.  相似文献   

12.
Prescribed fire is a management tool used by wildland resource management organizations in many ecosystems to reduce hazardous fuels and to achieve a host of other objectives. To study the effects of fire in naturally accumulating fuel conditions, the ambient soil temperature is monitored beneath prescribed burns. In this study we developed a stochastic model for temperature profiles (values at 15 minute intervals) recorded at four depths beneath the soil during a large prescribed burn study. The model was used to assess the temporal fit of the data to particular solutions of the heat equation. We used a random effects model to assess the effects of observed site characteristics on maximum temperatures and to estimate risks of temperatures exceeding critical levels in future similar prescribed fires. Contour plots of estimated risks of temperatures exceeding 60°C for a range of fuel levels and soil depths indicated high risks of occurrence, especially when the moisture levels are low. However, the natural variability among sites seems to be large, even after controlling fuel and moisture levels, resulting in large standard errors of predicted risks.  相似文献   

13.
Fire has shaped ecological communities worldwide for millennia, but impacts of fire on individual species are often poorly understood. We performed a meta-analysis to predict which traits, habitat, or study variables and fire characteristics affect how mammal species respond to fire. We modeled effect sizes of measures of population abundance or occupancy as a function of various combinations of these traits and variables with phylogenetic least squares regression. Nine of 115 modeled species (7.83%) returned statistically significant effect sizes, suggesting most mammals are resilient to fire. The top-ranked model predicted a negative impact of fire on species with lower reproductive rates, regardless of fire type (estimate = –0.68), a positive impact of burrowing in prescribed fires (estimate = 1.46) but not wildfires, and a positive impact of average fire return interval for wildfires (estimate = 0.93) but not prescribed fires. If a species’ International Union for Conservation of Nature Red List assessment includes fire as a known or possible threat, the species was predicted to respond negatively to wildfire relative to prescribed fire (estimate = –2.84). These findings provide evidence of experts’ abilities to predict whether fire is a threat to a mammal species and the ability of managers to meet the needs of fire-threatened species through prescribed fire. Where empirical data are lacking, our methods provide a basis for predicting mammal responses to fire and thus can guide conservation actions or interventions in species or communities.  相似文献   

14.
Fire disturbance is a primary agent of change in the mediterranean-climate chaparral shrublands of southern California, USA. However, fire frequency has been steadily increasing in coastal regions due to ignitions at the growing wildland-urban interface. Although chaparral is resilient to a range of fire frequencies, successively short intervals between fires can threaten the persistence of some species, and the effects may differ according to plant functional type. California shrublands support high levels of biological diversity, including many endangered and endemic species. Therefore, it is important to understand the long-term effects of altered fire regimes on these communities. A spatially explicit simulation model of landscape disturbance and succession (LANDIS) was used to predict the effects of frequent fire on the distribution of dominant plant functional types in a study area administered by the National Park Service. Shrubs dependent on fire-cued seed germination were most sensitive to frequent fire and lost substantial cover to other functional types, including drought-deciduous subshrubs that typify coastal sage scrub and nonnative annual grasses. Shrubs that resprout were favored by higher fire frequencies and gained in extent under these treatments. Due to this potential for vegetation change, caution is advised against the widespread use of prescribed fire in the region.  相似文献   

15.
Abstract:  Verticordia fimbrilepis (Turcz) ssp. fimbrilepis (Myrtaceae) is an endangered shrub that occurs in a number of populations varying in size and landscape context. We compared the importance of factors associated with its reproductive biology with that of factors influencing the regeneration niche in survival of small, isolated populations in contrasting habitat fragments. Small populations on road verges had equal or greater diversity of insect visitors to flowers, rates of pollination, and seed production compared with larger populations in conservation reserves. V. fimbrilepis seeds remained dormant in the soil for at least 30 months, and germination was stimulated by smoke. Plants were killed by fire, but mass recruitment from soil-stored seed reserves occurred in the first and second winters following fire. Our studies showed some seedling recruitment between fires, but this was strongly related to the availability of competition-free establishment sites. Whether this is enough to replace older plants as they die and thereby sustain stable populations is unknown and probably varies with the landscape. Environmental variation between fire episodes influenced population size. Drought increased mortality, but wetter years encouraged interfire recruitment. Most populations are declining and cannot recover without the occurrence of fire. In a fragmented agricultural landscape, fire suppression is the primary management practice. This may adversely affect rare species such as V. fimbrilepis and others with similar life histories that rely on a particular fire regime to persist. Population persistence is more likely to be related to stochastic environmental events than to factors associated with reproductive biology.  相似文献   

16.
Globally, the mean abundance of terrestrial animals has fallen by 50% since 1970, and populations face ongoing threats associated with habitat loss, fragmentation, climate change, and disturbance. Climate change can influence the quality of remaining habitat directly and indirectly by precipitating increases in the extent, frequency, and severity of natural disturbances, such as fire. Species face the combined threats of habitat clearance, changing climates, and altered disturbance regimes, each of which may interact and have cascading impacts on animal populations. Typically, conservation agencies are limited in their capacity to mitigate rates of habitat clearance, habitat fragmentation, or climate change, yet fire management is increasingly used worldwide to reduce wildfire risk and achieve conservation outcomes. A popular approach to ecological fire management involves the creation of fire mosaics to promote animal diversity. However, this strategy has 2 fundamental limitations: the effect of fire on animal movement within or among habitat patches is not considered and the implications of the current fire regime for long-term population persistence are overlooked. Spatial and temporal patterns in fire history can influence animal movement, which is essential to the survival of individual animals, maintenance of genetic diversity, and persistence of populations, species, and ecosystems. We argue that there is rich potential for fire managers to manipulate animal movement patterns; enhance functional connectivity, gene flow, and genetic diversity; and increase the capacity of populations to persist under shifting environmental conditions. Recent methodological advances, such as spatiotemporal connectivity modeling, spatially explicit individual-based simulation, and fire-regime modeling can be integrated to achieve better outcomes for biodiversity in human-modified, fire-prone landscapes. Article impact statement: Land managers may conserve populations by using fire to sustain or enhance functional connectivity.  相似文献   

17.
《Ecological modelling》2007,207(1):34-44
A simple simulation model has been used to investigate whether large fires in Mediterranean regions are a result of extreme weather conditions or the cumulative effect of a policy of fire suppression over decades. The model reproduced the fire regime characteristics for a wide variety of regions of Mediterranean climate in California, France and Spain. The Generalised Likelihood Uncertainty Estimation (GLUE) methodology was used to assess the possibility of multiple model parameter sets being consistent with the available calibration data. The resulting set of behavioural models was used to assess uncertainty in the predictions. The results suggested that (1) for a given region, the total area burned is much the same whether suppression or prescribed fire policies are used or not; however fire suppression enhances fire intensity and prescribed burning reduces it; (2) the proportion of large fires can be reduced, but not eliminated, using prescribed fires, especially in areas which have the highest proportion of large fires.  相似文献   

18.
The analysis of large data sets concerning fires in various forested areas of the world has pointed out that burned areas can often be described by different power-law distributions for small, medium and large fires and that a scaling law for the time intervals separating successive fires is fulfilled. The attempts of deriving such statistical laws from purely theoretical arguments have not been fully successful so far, most likely because important physical and/or biological factors controlling forest fires were not taken into account. By contrast, the two-layer spatially extended forest model we propose in this paper encapsulates the main characteristics of vegetational growth and fire ignition and propagation, and supports the empirically discovered statistical laws. Since the model is fully deterministic and spatially homogeneous, the emergence of the power and scaling laws does not seem to necessarily require meteorological randomness and geophysical heterogeneity, although these factors certainly amplify the chaoticity of the fires. Moreover, the analysis suggests that the existence of different power-laws for fires of various scale might be due to the two-layer structure of the forest which allows the formation of different kinds of fires, i.e. surface, crown, and mixed fires.  相似文献   

19.
《Ecological modelling》2005,183(4):397-409
There is a debate on which factor, fuel accumulation or meteorological variability, is the fundamental control of the occurrence of large fires in Mediterranean-type ecosystems. Its resolution has important management implications, because if the fuel hypothesis proves to be right, then fire-exclusion would enhance the occurrence of large wildfires, and prescribed-fires would be a useful tool to fight them. On the other hand, if large fires were just a direct consequence of some extreme weather situations, neither fire-exclusion nor prescribed fire would have any influence on the size of wildfires. Here we present a simple model of vegetation dynamics and fire spread over homogeneous areas intended to treat quantitatively this issue. In particular, we wanted to address the following questions: (1) What is the effect that different fire fighting capacities have on the total area burnt and, especially, on large fires? (2) What is the effect that different levels of prescribed fire have on the area burnt in wildfires and, especially, in large fires? The model incorporates meteorological variability, different rates of fuel accumulation, number of ignitions per year, fire-fighting capacity, and prescribed burning. The model was calibrated with fire regime data (mean fire size, annual area burnt, and fire size distribution) of Tarragona (NE Spain) and Coimbra (Central Portugal), and it accurately reproduced both data sets, while allowing for multiple behavioural models and prediction uncertainties within the GLUE methodology. Results showed that for a given region, with its particular characteristics of climate, number of ignitions, and vegetation flammability, there was a fairly constant annual area burnt for different fire-fighting capacities. However, higher fire-fighting capacities resulted in a slightly higher proportion of large fires. There was also a quite constant annual area burnt (prescribed and wild fires together) for different prescribed fire intensities in each region. However, the total amount and proportion of large fires decreased as the prescribed burning intensity increased. So, according to the model, it seems that the total area burnt will be more or less the same despite any effort to reduce it by extinguishing fires or by using prescribed burning. Nevertheless, the effect of the fire exclusion policy slightly enhances the dominance of large fires, whereas the use of prescribed fires greatly reduces the importance of large fires.  相似文献   

20.
Populations of plants that rely on seeds for recovery from disturbance by fire (obligate seeders) are sensitive to regimes of frequent fire. Obligate seeders are prominent in fire-prone heathlands of southern Australia and South Africa. Population extinction may occur if there are successive fires during a plant's juvenile period. Research on the population biology of obligate seeders has influenced the management of fire in these heath and shrublands, but work on the effects of the spatial variability of fires is lacking. We hypothesize that extinction maybe avoided under an adverse fire frequency if fires are patchy. We present a model that simulates the effects of spatial and temporal variations in fire regimes on the viability of a plant population in a grid landscape. Seedling establishment, maturation, senescence, and seed dispersal determine the presence or absence of plants in each cell. We used values typical of serotinous Banksia species to estimate probability of extinction in relation to fire frequency and size. We examined the sensitivity of predictions to dispersal, senescence, fire frequency, spatial burning pattern and size variance, and the size of the grid. Simulations 200 years in length indicated that extinction probability was lowest when mean fire frequency was intermediate and mean fire size was large. When fire frequency was high, extinction probability was high irrespective of fire size. Senescence was more important than high-frequency fire as a cause of extinction in cells. Interactions between dispersal, fire frequency, and size were complex, indicating that extinction is governed by intercell connectivity. The model indicates that fire patchiness cannot be assumed to ensure avoidance of extinction of populations. Conservation of populations is most likely when fire patchiness is relatively low—when the size of fires is moderate to large and when burned patches are contiguous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号